Whakaoti mō a
a = \frac{13}{2} = 6\frac{1}{2} = 6.5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{6a-5}=\sqrt{4a+8}
Me tango -\sqrt{4a+8} mai i ngā taha e rua o te whārite.
\left(\sqrt{6a-5}\right)^{2}=\left(\sqrt{4a+8}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
6a-5=\left(\sqrt{4a+8}\right)^{2}
Tātaihia te \sqrt{6a-5} mā te pū o 2, kia riro ko 6a-5.
6a-5=4a+8
Tātaihia te \sqrt{4a+8} mā te pū o 2, kia riro ko 4a+8.
6a-5-4a=8
Tangohia te 4a mai i ngā taha e rua.
2a-5=8
Pahekotia te 6a me -4a, ka 2a.
2a=8+5
Me tāpiri te 5 ki ngā taha e rua.
2a=13
Tāpirihia te 8 ki te 5, ka 13.
a=\frac{13}{2}
Whakawehea ngā taha e rua ki te 2.
\sqrt{6\times \frac{13}{2}-5}-\sqrt{4\times \frac{13}{2}+8}=0
Whakakapia te \frac{13}{2} mō te a i te whārite \sqrt{6a-5}-\sqrt{4a+8}=0.
0=0
Whakarūnātia. Ko te uara a=\frac{13}{2} kua ngata te whārite.
a=\frac{13}{2}
Ko te whārite \sqrt{6a-5}=\sqrt{4a+8} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}