Aromātai
\frac{2\left(3\sqrt{3}+11\sqrt{2}\right)}{5}\approx 8.301000644
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{6}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{2}}+\sqrt{50}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{6}}{\frac{\sqrt{3}}{3}+\sqrt{2}}+\sqrt{50}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}}{\frac{\sqrt{3}}{3}+\frac{3\sqrt{2}}{3}}+\sqrt{50}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia \sqrt{2} ki te \frac{3}{3}.
\frac{\sqrt{6}}{\frac{\sqrt{3}+3\sqrt{2}}{3}}+\sqrt{50}
Tā te mea he rite te tauraro o \frac{\sqrt{3}}{3} me \frac{3\sqrt{2}}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\sqrt{6}\times 3}{\sqrt{3}+3\sqrt{2}}+\sqrt{50}
Whakawehe \sqrt{6} ki te \frac{\sqrt{3}+3\sqrt{2}}{3} mā te whakarea \sqrt{6} ki te tau huripoki o \frac{\sqrt{3}+3\sqrt{2}}{3}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{\left(\sqrt{3}+3\sqrt{2}\right)\left(\sqrt{3}-3\sqrt{2}\right)}+\sqrt{50}
Whakangāwaritia te tauraro o \frac{\sqrt{6}\times 3}{\sqrt{3}+3\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-3\sqrt{2}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}+\sqrt{50}
Whakaarohia te \left(\sqrt{3}+3\sqrt{2}\right)\left(\sqrt{3}-3\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-\left(3\sqrt{2}\right)^{2}}+\sqrt{50}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-3^{2}\left(\sqrt{2}\right)^{2}}+\sqrt{50}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-9\left(\sqrt{2}\right)^{2}}+\sqrt{50}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-9\times 2}+\sqrt{50}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{3-18}+\sqrt{50}
Whakareatia te 9 ki te 2, ka 18.
\frac{\sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right)}{-15}+\sqrt{50}
Tangohia te 18 i te 3, ka -15.
\sqrt{6}\left(-\frac{1}{5}\right)\left(\sqrt{3}-3\sqrt{2}\right)+\sqrt{50}
Whakawehea te \sqrt{6}\times 3\left(\sqrt{3}-3\sqrt{2}\right) ki te -15, kia riro ko \sqrt{6}\left(-\frac{1}{5}\right)\left(\sqrt{3}-3\sqrt{2}\right).
\sqrt{6}\left(-\frac{1}{5}\right)\left(\sqrt{3}-3\sqrt{2}\right)+5\sqrt{2}
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
\sqrt{6}\left(-\frac{1}{5}\right)\sqrt{3}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{6}\left(-\frac{1}{5}\right) ki te \sqrt{3}-3\sqrt{2}.
\sqrt{3}\sqrt{2}\left(-\frac{1}{5}\right)\sqrt{3}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
3\left(-\frac{1}{5}\right)\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{3\left(-1\right)}{5}\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Tuhia te 3\left(-\frac{1}{5}\right) hei hautanga kotahi.
\frac{-3}{5}\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Whakareatia te 3 ki te -1, ka -3.
-\frac{3}{5}\sqrt{2}+\sqrt{6}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Ka taea te hautanga \frac{-3}{5} te tuhi anō ko -\frac{3}{5} mā te tango i te tohu tōraro.
-\frac{3}{5}\sqrt{2}+\sqrt{2}\sqrt{3}\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{2}+5\sqrt{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
-\frac{3}{5}\sqrt{2}+2\left(-\frac{1}{5}\right)\left(-3\right)\sqrt{3}+5\sqrt{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
-\frac{3}{5}\sqrt{2}+\frac{2\left(-1\right)}{5}\left(-3\right)\sqrt{3}+5\sqrt{2}
Tuhia te 2\left(-\frac{1}{5}\right) hei hautanga kotahi.
-\frac{3}{5}\sqrt{2}+\frac{-2}{5}\left(-3\right)\sqrt{3}+5\sqrt{2}
Whakareatia te 2 ki te -1, ka -2.
-\frac{3}{5}\sqrt{2}-\frac{2}{5}\left(-3\right)\sqrt{3}+5\sqrt{2}
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
-\frac{3}{5}\sqrt{2}+\frac{-2\left(-3\right)}{5}\sqrt{3}+5\sqrt{2}
Tuhia te -\frac{2}{5}\left(-3\right) hei hautanga kotahi.
-\frac{3}{5}\sqrt{2}+\frac{6}{5}\sqrt{3}+5\sqrt{2}
Whakareatia te -2 ki te -3, ka 6.
\frac{22}{5}\sqrt{2}+\frac{6}{5}\sqrt{3}
Pahekotia te -\frac{3}{5}\sqrt{2} me 5\sqrt{2}, ka \frac{22}{5}\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}