Aromātai
\frac{2}{5}=0.4
Tauwehe
\frac{2}{5} = 0.4
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{7}{3}\times \frac{7}{3}}{2+\frac{1}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Tāpirihia te \frac{1}{3} ki te 2, ka \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{49}{9}}{2+\frac{1}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakareatia te \frac{7}{3} ki te \frac{7}{3}, ka \frac{49}{9}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{\frac{49}{9}}{\frac{5}{2}}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Tāpirihia te 2 ki te \frac{1}{2}, ka \frac{5}{2}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{49}{9}\times \frac{2}{5}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakawehe \frac{49}{9} ki te \frac{5}{2} mā te whakarea \frac{49}{9} ki te tau huripoki o \frac{5}{2}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{98}{45}}{\frac{5}{6}+\frac{3}{2}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakareatia te \frac{49}{9} ki te \frac{2}{5}, ka \frac{98}{45}.
\sqrt{6\left(\frac{5}{13}\left(\frac{\frac{98}{45}}{\frac{7}{3}}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Tāpirihia te \frac{5}{6} ki te \frac{3}{2}, ka \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{98}{45}\times \frac{3}{7}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakawehe \frac{98}{45} ki te \frac{7}{3} mā te whakarea \frac{98}{45} ki te tau huripoki o \frac{7}{3}.
\sqrt{6\left(\frac{5}{13}\left(\frac{14}{15}+1-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakareatia te \frac{98}{45} ki te \frac{3}{7}, ka \frac{14}{15}.
\sqrt{6\left(\frac{5}{13}\left(\frac{29}{15}-\frac{1}{5}\right)-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Tāpirihia te \frac{14}{15} ki te 1, ka \frac{29}{15}.
\sqrt{6\left(\frac{5}{13}\times \frac{26}{15}-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Tangohia te \frac{1}{5} i te \frac{29}{15}, ka \frac{26}{15}.
\sqrt{6\left(\frac{2}{3}-\frac{1}{2}\right)\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakareatia te \frac{5}{13} ki te \frac{26}{15}, ka \frac{2}{3}.
\sqrt{6\times \frac{1}{6}\times \left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Tangohia te \frac{1}{2} i te \frac{2}{3}, ka \frac{1}{6}.
\sqrt{\left(\frac{5}{9}\times \frac{\frac{2}{15}+\frac{5}{3}}{\frac{5}{2}}\right)^{2}}
Whakareatia te 6 ki te \frac{1}{6}, ka 1.
\sqrt{\left(\frac{5}{9}\times \frac{\frac{9}{5}}{\frac{5}{2}}\right)^{2}}
Tāpirihia te \frac{2}{15} ki te \frac{5}{3}, ka \frac{9}{5}.
\sqrt{\left(\frac{5}{9}\times \frac{9}{5}\times \frac{2}{5}\right)^{2}}
Whakawehe \frac{9}{5} ki te \frac{5}{2} mā te whakarea \frac{9}{5} ki te tau huripoki o \frac{5}{2}.
\sqrt{\left(\frac{5}{9}\times \frac{18}{25}\right)^{2}}
Whakareatia te \frac{9}{5} ki te \frac{2}{5}, ka \frac{18}{25}.
\sqrt{\left(\frac{2}{5}\right)^{2}}
Whakareatia te \frac{5}{9} ki te \frac{18}{25}, ka \frac{2}{5}.
\sqrt{\frac{4}{25}}
Tātaihia te \frac{2}{5} mā te pū o 2, kia riro ko \frac{4}{25}.
\frac{2}{5}
Tuhia anō te pūtake rua o te whakawehenga \frac{4}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}