Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{6+\sqrt{x+4}}\right)^{2}=\left(\sqrt{2x-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
6+\sqrt{x+4}=\left(\sqrt{2x-1}\right)^{2}
Tātaihia te \sqrt{6+\sqrt{x+4}} mā te pū o 2, kia riro ko 6+\sqrt{x+4}.
6+\sqrt{x+4}=2x-1
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
\sqrt{x+4}=2x-1-6
Me tango 6 mai i ngā taha e rua o te whārite.
\sqrt{x+4}=2x-7
Tangohia te 6 i te -1, ka -7.
\left(\sqrt{x+4}\right)^{2}=\left(2x-7\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x+4=\left(2x-7\right)^{2}
Tātaihia te \sqrt{x+4} mā te pū o 2, kia riro ko x+4.
x+4=4x^{2}-28x+49
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-7\right)^{2}.
x+4-4x^{2}=-28x+49
Tangohia te 4x^{2} mai i ngā taha e rua.
x+4-4x^{2}+28x=49
Me tāpiri te 28x ki ngā taha e rua.
29x+4-4x^{2}=49
Pahekotia te x me 28x, ka 29x.
29x+4-4x^{2}-49=0
Tangohia te 49 mai i ngā taha e rua.
29x-45-4x^{2}=0
Tangohia te 49 i te 4, ka -45.
-4x^{2}+29x-45=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=29 ab=-4\left(-45\right)=180
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4x^{2}+ax+bx-45. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Tātaihia te tapeke mō ia takirua.
a=20 b=9
Ko te otinga te takirua ka hoatu i te tapeke 29.
\left(-4x^{2}+20x\right)+\left(9x-45\right)
Tuhia anō te -4x^{2}+29x-45 hei \left(-4x^{2}+20x\right)+\left(9x-45\right).
4x\left(-x+5\right)-9\left(-x+5\right)
Tauwehea te 4x i te tuatahi me te -9 i te rōpū tuarua.
\left(-x+5\right)\left(4x-9\right)
Whakatauwehea atu te kīanga pātahi -x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=\frac{9}{4}
Hei kimi otinga whārite, me whakaoti te -x+5=0 me te 4x-9=0.
\sqrt{6+\sqrt{5+4}}=\sqrt{2\times 5-1}
Whakakapia te 5 mō te x i te whārite \sqrt{6+\sqrt{x+4}}=\sqrt{2x-1}.
3=3
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
\sqrt{6+\sqrt{\frac{9}{4}+4}}=\sqrt{2\times \frac{9}{4}-1}
Whakakapia te \frac{9}{4} mō te x i te whārite \sqrt{6+\sqrt{x+4}}=\sqrt{2x-1}.
\frac{1}{2}\times 34^{\frac{1}{2}}=\frac{1}{2}\times 14^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{9}{4} kāore e ngata ana ki te whārite.
\sqrt{6+\sqrt{5+4}}=\sqrt{2\times 5-1}
Whakakapia te 5 mō te x i te whārite \sqrt{6+\sqrt{x+4}}=\sqrt{2x-1}.
3=3
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
x=5
Ko te whārite \sqrt{\sqrt{x+4}+6}=\sqrt{2x-1} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}