Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

14\sqrt{3}-\sqrt{300}+\sqrt{108}-21\sqrt{8-1}
Tauwehea te 588=14^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{14^{2}\times 3} hei hua o ngā pūtake rua \sqrt{14^{2}}\sqrt{3}. Tuhia te pūtakerua o te 14^{2}.
14\sqrt{3}-10\sqrt{3}+\sqrt{108}-21\sqrt{8-1}
Tauwehea te 300=10^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 3} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{3}. Tuhia te pūtakerua o te 10^{2}.
4\sqrt{3}+\sqrt{108}-21\sqrt{8-1}
Pahekotia te 14\sqrt{3} me -10\sqrt{3}, ka 4\sqrt{3}.
4\sqrt{3}+6\sqrt{3}-21\sqrt{8-1}
Tauwehea te 108=6^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 3} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{3}. Tuhia te pūtakerua o te 6^{2}.
10\sqrt{3}-21\sqrt{8-1}
Pahekotia te 4\sqrt{3} me 6\sqrt{3}, ka 10\sqrt{3}.
10\sqrt{3}-21\sqrt{7}
Tangohia te 1 i te 8, ka 7.