Aromātai
11
Tauwehe
11
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{51+4+3^{2}}-\sqrt{3^{2}+4^{2}}+\sqrt{6^{2}+3^{3}+1^{4}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\sqrt{55+3^{2}}-\sqrt{3^{2}+4^{2}}+\sqrt{6^{2}+3^{3}+1^{4}}
Tāpirihia te 51 ki te 4, ka 55.
\sqrt{55+9}-\sqrt{3^{2}+4^{2}}+\sqrt{6^{2}+3^{3}+1^{4}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{64}-\sqrt{3^{2}+4^{2}}+\sqrt{6^{2}+3^{3}+1^{4}}
Tāpirihia te 55 ki te 9, ka 64.
8-\sqrt{3^{2}+4^{2}}+\sqrt{6^{2}+3^{3}+1^{4}}
Tātaitia te pūtakerua o 64 kia tae ki 8.
8-\sqrt{9+4^{2}}+\sqrt{6^{2}+3^{3}+1^{4}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
8-\sqrt{9+16}+\sqrt{6^{2}+3^{3}+1^{4}}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
8-\sqrt{25}+\sqrt{6^{2}+3^{3}+1^{4}}
Tāpirihia te 9 ki te 16, ka 25.
8-5+\sqrt{6^{2}+3^{3}+1^{4}}
Tātaitia te pūtakerua o 25 kia tae ki 5.
3+\sqrt{6^{2}+3^{3}+1^{4}}
Tangohia te 5 i te 8, ka 3.
3+\sqrt{36+3^{3}+1^{4}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
3+\sqrt{36+27+1^{4}}
Tātaihia te 3 mā te pū o 3, kia riro ko 27.
3+\sqrt{63+1^{4}}
Tāpirihia te 36 ki te 27, ka 63.
3+\sqrt{63+1}
Tātaihia te 1 mā te pū o 4, kia riro ko 1.
3+\sqrt{64}
Tāpirihia te 63 ki te 1, ka 64.
3+8
Tātaitia te pūtakerua o 64 kia tae ki 8.
11
Tāpirihia te 3 ki te 8, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}