Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{5x-1}-\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{5x-1}\right)^{2}-2\sqrt{5x-1}\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{5x-1}-\sqrt{3x-2}\right)^{2}.
5x-1-2\sqrt{5x-1}\sqrt{3x-2}+\left(\sqrt{3x-2}\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Tātaihia te \sqrt{5x-1} mā te pū o 2, kia riro ko 5x-1.
5x-1-2\sqrt{5x-1}\sqrt{3x-2}+3x-2=\left(\sqrt{x-1}\right)^{2}
Tātaihia te \sqrt{3x-2} mā te pū o 2, kia riro ko 3x-2.
8x-1-2\sqrt{5x-1}\sqrt{3x-2}-2=\left(\sqrt{x-1}\right)^{2}
Pahekotia te 5x me 3x, ka 8x.
8x-3-2\sqrt{5x-1}\sqrt{3x-2}=\left(\sqrt{x-1}\right)^{2}
Tangohia te 2 i te -1, ka -3.
8x-3-2\sqrt{5x-1}\sqrt{3x-2}=x-1
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
-2\sqrt{5x-1}\sqrt{3x-2}=x-1-\left(8x-3\right)
Me tango 8x-3 mai i ngā taha e rua o te whārite.
-2\sqrt{5x-1}\sqrt{3x-2}=x-1-8x+3
Hei kimi i te tauaro o 8x-3, kimihia te tauaro o ia taurangi.
-2\sqrt{5x-1}\sqrt{3x-2}=-7x-1+3
Pahekotia te x me -8x, ka -7x.
-2\sqrt{5x-1}\sqrt{3x-2}=-7x+2
Tāpirihia te -1 ki te 3, ka 2.
\left(-2\sqrt{5x-1}\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Whakarohaina te \left(-2\sqrt{5x-1}\sqrt{3x-2}\right)^{2}.
4\left(\sqrt{5x-1}\right)^{2}\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\left(5x-1\right)\left(\sqrt{3x-2}\right)^{2}=\left(-7x+2\right)^{2}
Tātaihia te \sqrt{5x-1} mā te pū o 2, kia riro ko 5x-1.
4\left(5x-1\right)\left(3x-2\right)=\left(-7x+2\right)^{2}
Tātaihia te \sqrt{3x-2} mā te pū o 2, kia riro ko 3x-2.
\left(20x-4\right)\left(3x-2\right)=\left(-7x+2\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 5x-1.
60x^{2}-40x-12x+8=\left(-7x+2\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 20x-4 ki ia tau o 3x-2.
60x^{2}-52x+8=\left(-7x+2\right)^{2}
Pahekotia te -40x me -12x, ka -52x.
60x^{2}-52x+8=49x^{2}-28x+4
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-7x+2\right)^{2}.
60x^{2}-52x+8-49x^{2}=-28x+4
Tangohia te 49x^{2} mai i ngā taha e rua.
11x^{2}-52x+8=-28x+4
Pahekotia te 60x^{2} me -49x^{2}, ka 11x^{2}.
11x^{2}-52x+8+28x=4
Me tāpiri te 28x ki ngā taha e rua.
11x^{2}-24x+8=4
Pahekotia te -52x me 28x, ka -24x.
11x^{2}-24x+8-4=0
Tangohia te 4 mai i ngā taha e rua.
11x^{2}-24x+4=0
Tangohia te 4 i te 8, ka 4.
a+b=-24 ab=11\times 4=44
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 11x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-44 -2,-22 -4,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 44.
-1-44=-45 -2-22=-24 -4-11=-15
Tātaihia te tapeke mō ia takirua.
a=-22 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -24.
\left(11x^{2}-22x\right)+\left(-2x+4\right)
Tuhia anō te 11x^{2}-24x+4 hei \left(11x^{2}-22x\right)+\left(-2x+4\right).
11x\left(x-2\right)-2\left(x-2\right)
Tauwehea te 11x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-2\right)\left(11x-2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=\frac{2}{11}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 11x-2=0.
\sqrt{5\times \frac{2}{11}-1}-\sqrt{3\times \frac{2}{11}-2}=\sqrt{\frac{2}{11}-1}
Whakakapia te \frac{2}{11} mō te x i te whārite \sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1}. Te kīanga \sqrt{5\times \frac{2}{11}-1} kia kore e tautuhitia nā te mea kāore te radicand e noho tōraro.
\sqrt{5\times 2-1}-\sqrt{3\times 2-2}=\sqrt{2-1}
Whakakapia te 2 mō te x i te whārite \sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1}.
1=1
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
x=2
Ko te whārite \sqrt{5x-1}-\sqrt{3x-2}=\sqrt{x-1} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}