Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{5x+9}\right)^{2}=\left(2x+3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
5x+9=\left(2x+3\right)^{2}
Tātaihia te \sqrt{5x+9} mā te pū o 2, kia riro ko 5x+9.
5x+9=4x^{2}+12x+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+3\right)^{2}.
5x+9-4x^{2}=12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
5x+9-4x^{2}-12x=9
Tangohia te 12x mai i ngā taha e rua.
-7x+9-4x^{2}=9
Pahekotia te 5x me -12x, ka -7x.
-7x+9-4x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
-7x-4x^{2}=0
Tangohia te 9 i te 9, ka 0.
x\left(-7-4x\right)=0
Tauwehea te x.
x=0 x=-\frac{7}{4}
Hei kimi otinga whārite, me whakaoti te x=0 me te -7-4x=0.
\sqrt{5\times 0+9}=2\times 0+3
Whakakapia te 0 mō te x i te whārite \sqrt{5x+9}=2x+3.
3=3
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{5\left(-\frac{7}{4}\right)+9}=2\left(-\frac{7}{4}\right)+3
Whakakapia te -\frac{7}{4} mō te x i te whārite \sqrt{5x+9}=2x+3.
\frac{1}{2}=-\frac{1}{2}
Whakarūnātia. Ko te uara x=-\frac{7}{4} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=0
Ko te whārite \sqrt{5x+9}=2x+3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}