Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{5x+9}\right)^{2}=\left(2x+3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
5x+9=\left(2x+3\right)^{2}
Tātaihia te \sqrt{5x+9} mā te pū o 2, kia riro ko 5x+9.
5x+9=4x^{2}+12x+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+3\right)^{2}.
5x+9-4x^{2}=12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
5x+9-4x^{2}-12x=9
Tangohia te 12x mai i ngā taha e rua.
-7x+9-4x^{2}=9
Pahekotia te 5x me -12x, ka -7x.
-7x+9-4x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
-7x-4x^{2}=0
Tangohia te 9 i te 9, ka 0.
x\left(-7-4x\right)=0
Tauwehea te x.
x=0 x=-\frac{7}{4}
Hei kimi otinga whārite, me whakaoti te x=0 me te -7-4x=0.
\sqrt{5\times 0+9}=2\times 0+3
Whakakapia te 0 mō te x i te whārite \sqrt{5x+9}=2x+3.
3=3
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{5\left(-\frac{7}{4}\right)+9}=2\left(-\frac{7}{4}\right)+3
Whakakapia te -\frac{7}{4} mō te x i te whārite \sqrt{5x+9}=2x+3.
\frac{1}{2}=-\frac{1}{2}
Whakarūnātia. Ko te uara x=-\frac{7}{4} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=0
Ko te whārite \sqrt{5x+9}=2x+3 he rongoā ahurei.