Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{5}-3\times 2\sqrt{5}+\sqrt{125}+\sqrt{\frac{1}{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\sqrt{5}-6\sqrt{5}+\sqrt{125}+\sqrt{\frac{1}{5}}
Whakareatia te -3 ki te 2, ka -6.
-5\sqrt{5}+\sqrt{125}+\sqrt{\frac{1}{5}}
Pahekotia te \sqrt{5} me -6\sqrt{5}, ka -5\sqrt{5}.
-5\sqrt{5}+5\sqrt{5}+\sqrt{\frac{1}{5}}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\sqrt{\frac{1}{5}}
Pahekotia te -5\sqrt{5} me 5\sqrt{5}, ka 0.
\frac{\sqrt{1}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
\frac{1}{\sqrt{5}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.