Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\sqrt{3}+6\sqrt{\frac{1}{3}}-\sqrt{75}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{3}+6\times \frac{\sqrt{1}}{\sqrt{3}}-\sqrt{75}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
4\sqrt{3}+6\times \frac{1}{\sqrt{3}}-\sqrt{75}
Tātaitia te pūtakerua o 1 kia tae ki 1.
4\sqrt{3}+6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt{75}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
4\sqrt{3}+6\times \frac{\sqrt{3}}{3}-\sqrt{75}
Ko te pūrua o \sqrt{3} ko 3.
4\sqrt{3}+2\sqrt{3}-\sqrt{75}
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 6 me te 3.
6\sqrt{3}-\sqrt{75}
Pahekotia te 4\sqrt{3} me 2\sqrt{3}, ka 6\sqrt{3}.
6\sqrt{3}-5\sqrt{3}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
\sqrt{3}
Pahekotia te 6\sqrt{3} me -5\sqrt{3}, ka \sqrt{3}.