Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{3\sqrt{5}}{\sqrt{32}}\sqrt{8}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{5}}{4\sqrt{2}}\sqrt{8}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{3\sqrt{5}\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}\sqrt{8}
Whakangāwaritia te tauraro o \frac{3\sqrt{5}}{4\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{3\sqrt{5}\sqrt{2}}{4\times 2}\sqrt{8}
Ko te pūrua o \sqrt{2} ko 2.
\frac{3\sqrt{10}}{4\times 2}\sqrt{8}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{10}}{8}\sqrt{8}
Whakareatia te 4 ki te 2, ka 8.
\frac{3\sqrt{10}}{8}\times 2\sqrt{2}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{3\sqrt{10}}{4}\sqrt{2}
Whakakorea atu te tauwehe pūnoa nui rawa 8 i roto i te 2 me te 8.
\frac{3\sqrt{10}\sqrt{2}}{4}
Tuhia te \frac{3\sqrt{10}}{4}\sqrt{2} hei hautanga kotahi.
\frac{3\sqrt{2}\sqrt{5}\sqrt{2}}{4}
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
\frac{3\times 2\sqrt{5}}{4}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{6\sqrt{5}}{4}
Whakareatia te 3 ki te 2, ka 6.
\frac{3}{2}\sqrt{5}
Whakawehea te 6\sqrt{5} ki te 4, kia riro ko \frac{3}{2}\sqrt{5}.