Aromātai
8\sqrt{10}+13\sqrt{5}\approx 54.367104989
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt { 45 } + 3 \sqrt { 20 } + \sqrt { 80 } + 4 \sqrt { 40 }
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{5}+3\sqrt{20}+\sqrt{80}+4\sqrt{40}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
3\sqrt{5}+3\times 2\sqrt{5}+\sqrt{80}+4\sqrt{40}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
3\sqrt{5}+6\sqrt{5}+\sqrt{80}+4\sqrt{40}
Whakareatia te 3 ki te 2, ka 6.
9\sqrt{5}+\sqrt{80}+4\sqrt{40}
Pahekotia te 3\sqrt{5} me 6\sqrt{5}, ka 9\sqrt{5}.
9\sqrt{5}+4\sqrt{5}+4\sqrt{40}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
13\sqrt{5}+4\sqrt{40}
Pahekotia te 9\sqrt{5} me 4\sqrt{5}, ka 13\sqrt{5}.
13\sqrt{5}+4\times 2\sqrt{10}
Tauwehea te 40=2^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 10} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{10}. Tuhia te pūtakerua o te 2^{2}.
13\sqrt{5}+8\sqrt{10}
Whakareatia te 4 ki te 2, ka 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}