Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{4y+20}=6+\sqrt{y-4}
Me tango -\sqrt{y-4} mai i ngā taha e rua o te whārite.
\left(\sqrt{4y+20}\right)^{2}=\left(6+\sqrt{y-4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4y+20=\left(6+\sqrt{y-4}\right)^{2}
Tātaihia te \sqrt{4y+20} mā te pū o 2, kia riro ko 4y+20.
4y+20=36+12\sqrt{y-4}+\left(\sqrt{y-4}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(6+\sqrt{y-4}\right)^{2}.
4y+20=36+12\sqrt{y-4}+y-4
Tātaihia te \sqrt{y-4} mā te pū o 2, kia riro ko y-4.
4y+20=32+12\sqrt{y-4}+y
Tangohia te 4 i te 36, ka 32.
4y+20-\left(32+y\right)=12\sqrt{y-4}
Me tango 32+y mai i ngā taha e rua o te whārite.
4y+20-32-y=12\sqrt{y-4}
Hei kimi i te tauaro o 32+y, kimihia te tauaro o ia taurangi.
4y-12-y=12\sqrt{y-4}
Tangohia te 32 i te 20, ka -12.
3y-12=12\sqrt{y-4}
Pahekotia te 4y me -y, ka 3y.
\left(3y-12\right)^{2}=\left(12\sqrt{y-4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
9y^{2}-72y+144=\left(12\sqrt{y-4}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3y-12\right)^{2}.
9y^{2}-72y+144=12^{2}\left(\sqrt{y-4}\right)^{2}
Whakarohaina te \left(12\sqrt{y-4}\right)^{2}.
9y^{2}-72y+144=144\left(\sqrt{y-4}\right)^{2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
9y^{2}-72y+144=144\left(y-4\right)
Tātaihia te \sqrt{y-4} mā te pū o 2, kia riro ko y-4.
9y^{2}-72y+144=144y-576
Whakamahia te āhuatanga tohatoha hei whakarea te 144 ki te y-4.
9y^{2}-72y+144-144y=-576
Tangohia te 144y mai i ngā taha e rua.
9y^{2}-216y+144=-576
Pahekotia te -72y me -144y, ka -216y.
9y^{2}-216y+144+576=0
Me tāpiri te 576 ki ngā taha e rua.
9y^{2}-216y+720=0
Tāpirihia te 144 ki te 576, ka 720.
y=\frac{-\left(-216\right)±\sqrt{\left(-216\right)^{2}-4\times 9\times 720}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -216 mō b, me 720 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-216\right)±\sqrt{46656-4\times 9\times 720}}{2\times 9}
Pūrua -216.
y=\frac{-\left(-216\right)±\sqrt{46656-36\times 720}}{2\times 9}
Whakareatia -4 ki te 9.
y=\frac{-\left(-216\right)±\sqrt{46656-25920}}{2\times 9}
Whakareatia -36 ki te 720.
y=\frac{-\left(-216\right)±\sqrt{20736}}{2\times 9}
Tāpiri 46656 ki te -25920.
y=\frac{-\left(-216\right)±144}{2\times 9}
Tuhia te pūtakerua o te 20736.
y=\frac{216±144}{2\times 9}
Ko te tauaro o -216 ko 216.
y=\frac{216±144}{18}
Whakareatia 2 ki te 9.
y=\frac{360}{18}
Nā, me whakaoti te whārite y=\frac{216±144}{18} ina he tāpiri te ±. Tāpiri 216 ki te 144.
y=20
Whakawehe 360 ki te 18.
y=\frac{72}{18}
Nā, me whakaoti te whārite y=\frac{216±144}{18} ina he tango te ±. Tango 144 mai i 216.
y=4
Whakawehe 72 ki te 18.
y=20 y=4
Kua oti te whārite te whakatau.
\sqrt{4\times 20+20}-\sqrt{20-4}=6
Whakakapia te 20 mō te y i te whārite \sqrt{4y+20}-\sqrt{y-4}=6.
6=6
Whakarūnātia. Ko te uara y=20 kua ngata te whārite.
\sqrt{4\times 4+20}-\sqrt{4-4}=6
Whakakapia te 4 mō te y i te whārite \sqrt{4y+20}-\sqrt{y-4}=6.
6=6
Whakarūnātia. Ko te uara y=4 kua ngata te whārite.
y=20 y=4
Rārangihia ngā rongoā katoa o \sqrt{4y+20}=\sqrt{y-4}+6.