Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{4y+12}=6+\sqrt{y-6}
Me tango -\sqrt{y-6} mai i ngā taha e rua o te whārite.
\left(\sqrt{4y+12}\right)^{2}=\left(6+\sqrt{y-6}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4y+12=\left(6+\sqrt{y-6}\right)^{2}
Tātaihia te \sqrt{4y+12} mā te pū o 2, kia riro ko 4y+12.
4y+12=36+12\sqrt{y-6}+\left(\sqrt{y-6}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(6+\sqrt{y-6}\right)^{2}.
4y+12=36+12\sqrt{y-6}+y-6
Tātaihia te \sqrt{y-6} mā te pū o 2, kia riro ko y-6.
4y+12=30+12\sqrt{y-6}+y
Tangohia te 6 i te 36, ka 30.
4y+12-\left(30+y\right)=12\sqrt{y-6}
Me tango 30+y mai i ngā taha e rua o te whārite.
4y+12-30-y=12\sqrt{y-6}
Hei kimi i te tauaro o 30+y, kimihia te tauaro o ia taurangi.
4y-18-y=12\sqrt{y-6}
Tangohia te 30 i te 12, ka -18.
3y-18=12\sqrt{y-6}
Pahekotia te 4y me -y, ka 3y.
\left(3y-18\right)^{2}=\left(12\sqrt{y-6}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
9y^{2}-108y+324=\left(12\sqrt{y-6}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3y-18\right)^{2}.
9y^{2}-108y+324=12^{2}\left(\sqrt{y-6}\right)^{2}
Whakarohaina te \left(12\sqrt{y-6}\right)^{2}.
9y^{2}-108y+324=144\left(\sqrt{y-6}\right)^{2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
9y^{2}-108y+324=144\left(y-6\right)
Tātaihia te \sqrt{y-6} mā te pū o 2, kia riro ko y-6.
9y^{2}-108y+324=144y-864
Whakamahia te āhuatanga tohatoha hei whakarea te 144 ki te y-6.
9y^{2}-108y+324-144y=-864
Tangohia te 144y mai i ngā taha e rua.
9y^{2}-252y+324=-864
Pahekotia te -108y me -144y, ka -252y.
9y^{2}-252y+324+864=0
Me tāpiri te 864 ki ngā taha e rua.
9y^{2}-252y+1188=0
Tāpirihia te 324 ki te 864, ka 1188.
y=\frac{-\left(-252\right)±\sqrt{\left(-252\right)^{2}-4\times 9\times 1188}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -252 mō b, me 1188 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-252\right)±\sqrt{63504-4\times 9\times 1188}}{2\times 9}
Pūrua -252.
y=\frac{-\left(-252\right)±\sqrt{63504-36\times 1188}}{2\times 9}
Whakareatia -4 ki te 9.
y=\frac{-\left(-252\right)±\sqrt{63504-42768}}{2\times 9}
Whakareatia -36 ki te 1188.
y=\frac{-\left(-252\right)±\sqrt{20736}}{2\times 9}
Tāpiri 63504 ki te -42768.
y=\frac{-\left(-252\right)±144}{2\times 9}
Tuhia te pūtakerua o te 20736.
y=\frac{252±144}{2\times 9}
Ko te tauaro o -252 ko 252.
y=\frac{252±144}{18}
Whakareatia 2 ki te 9.
y=\frac{396}{18}
Nā, me whakaoti te whārite y=\frac{252±144}{18} ina he tāpiri te ±. Tāpiri 252 ki te 144.
y=22
Whakawehe 396 ki te 18.
y=\frac{108}{18}
Nā, me whakaoti te whārite y=\frac{252±144}{18} ina he tango te ±. Tango 144 mai i 252.
y=6
Whakawehe 108 ki te 18.
y=22 y=6
Kua oti te whārite te whakatau.
\sqrt{4\times 22+12}-\sqrt{22-6}=6
Whakakapia te 22 mō te y i te whārite \sqrt{4y+12}-\sqrt{y-6}=6.
6=6
Whakarūnātia. Ko te uara y=22 kua ngata te whārite.
\sqrt{4\times 6+12}-\sqrt{6-6}=6
Whakakapia te 6 mō te y i te whārite \sqrt{4y+12}-\sqrt{y-6}=6.
6=6
Whakarūnātia. Ko te uara y=6 kua ngata te whārite.
y=22 y=6
Rārangihia ngā rongoā katoa o \sqrt{4y+12}=\sqrt{y-6}+6.