Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{4x-8}\right)^{2}=\left(\sqrt{x+7}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x-8=\left(\sqrt{x+7}\right)^{2}
Tātaihia te \sqrt{4x-8} mā te pū o 2, kia riro ko 4x-8.
4x-8=x+7
Tātaihia te \sqrt{x+7} mā te pū o 2, kia riro ko x+7.
4x-8-x=7
Tangohia te x mai i ngā taha e rua.
3x-8=7
Pahekotia te 4x me -x, ka 3x.
3x=7+8
Me tāpiri te 8 ki ngā taha e rua.
3x=15
Tāpirihia te 7 ki te 8, ka 15.
x=\frac{15}{3}
Whakawehea ngā taha e rua ki te 3.
x=5
Whakawehea te 15 ki te 3, kia riro ko 5.
\sqrt{4\times 5-8}=\sqrt{5+7}
Whakakapia te 5 mō te x i te whārite \sqrt{4x-8}=\sqrt{x+7}.
2\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
x=5
Ko te whārite \sqrt{4x-8}=\sqrt{x+7} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}