Whakaoti mō w
w=-2
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{4w+17}+1-1=4-1
Me tango 1 mai i ngā taha e rua o te whārite.
\sqrt{4w+17}=4-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\sqrt{4w+17}=3
Tango 1 mai i 4.
4w+17=9
Pūruatia ngā taha e rua o te whārite.
4w+17-17=9-17
Me tango 17 mai i ngā taha e rua o te whārite.
4w=9-17
Mā te tango i te 17 i a ia ake anō ka toe ko te 0.
4w=-8
Tango 17 mai i 9.
\frac{4w}{4}=-\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
w=-\frac{8}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
w=-2
Whakawehe -8 ki te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}