Whakaoti mō x
x=-5
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{4-x}=5-\sqrt{9+x}
Me tango \sqrt{9+x} mai i ngā taha e rua o te whārite.
\left(\sqrt{4-x}\right)^{2}=\left(5-\sqrt{9+x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4-x=\left(5-\sqrt{9+x}\right)^{2}
Tātaihia te \sqrt{4-x} mā te pū o 2, kia riro ko 4-x.
4-x=25-10\sqrt{9+x}+\left(\sqrt{9+x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(5-\sqrt{9+x}\right)^{2}.
4-x=25-10\sqrt{9+x}+9+x
Tātaihia te \sqrt{9+x} mā te pū o 2, kia riro ko 9+x.
4-x=34-10\sqrt{9+x}+x
Tāpirihia te 25 ki te 9, ka 34.
4-x-\left(34+x\right)=-10\sqrt{9+x}
Me tango 34+x mai i ngā taha e rua o te whārite.
4-x-34-x=-10\sqrt{9+x}
Hei kimi i te tauaro o 34+x, kimihia te tauaro o ia taurangi.
-30-x-x=-10\sqrt{9+x}
Tangohia te 34 i te 4, ka -30.
-30-2x=-10\sqrt{9+x}
Pahekotia te -x me -x, ka -2x.
\left(-30-2x\right)^{2}=\left(-10\sqrt{9+x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
900+120x+4x^{2}=\left(-10\sqrt{9+x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-30-2x\right)^{2}.
900+120x+4x^{2}=\left(-10\right)^{2}\left(\sqrt{9+x}\right)^{2}
Whakarohaina te \left(-10\sqrt{9+x}\right)^{2}.
900+120x+4x^{2}=100\left(\sqrt{9+x}\right)^{2}
Tātaihia te -10 mā te pū o 2, kia riro ko 100.
900+120x+4x^{2}=100\left(9+x\right)
Tātaihia te \sqrt{9+x} mā te pū o 2, kia riro ko 9+x.
900+120x+4x^{2}=900+100x
Whakamahia te āhuatanga tohatoha hei whakarea te 100 ki te 9+x.
900+120x+4x^{2}-900=100x
Tangohia te 900 mai i ngā taha e rua.
120x+4x^{2}=100x
Tangohia te 900 i te 900, ka 0.
120x+4x^{2}-100x=0
Tangohia te 100x mai i ngā taha e rua.
20x+4x^{2}=0
Pahekotia te 120x me -100x, ka 20x.
x\left(20+4x\right)=0
Tauwehea te x.
x=0 x=-5
Hei kimi otinga whārite, me whakaoti te x=0 me te 20+4x=0.
\sqrt{4-0}+\sqrt{9+0}=5
Whakakapia te 0 mō te x i te whārite \sqrt{4-x}+\sqrt{9+x}=5.
5=5
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt{4-\left(-5\right)}+\sqrt{9-5}=5
Whakakapia te -5 mō te x i te whārite \sqrt{4-x}+\sqrt{9+x}=5.
5=5
Whakarūnātia. Ko te uara x=-5 kua ngata te whārite.
x=0 x=-5
Rārangihia ngā rongoā katoa o \sqrt{4-x}=-\sqrt{x+9}+5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}