Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
6=\sqrt{6\times 6}\text{ and }\sqrt{6\times 6}=\sqrt{6^{2}}
Tātaitia te pūtakerua o 36 kia tae ki 6.
6=\sqrt{36}\text{ and }\sqrt{6\times 6}=\sqrt{6^{2}}
Whakareatia te 6 ki te 6, ka 36.
6=6\text{ and }\sqrt{6\times 6}=\sqrt{6^{2}}
Tātaitia te pūtakerua o 36 kia tae ki 6.
\text{true}\text{ and }\sqrt{6\times 6}=\sqrt{6^{2}}
Whakatauritea te 6 me te 6.
\text{true}\text{ and }\sqrt{36}=\sqrt{6^{2}}
Whakareatia te 6 ki te 6, ka 36.
\text{true}\text{ and }6=\sqrt{6^{2}}
Tātaitia te pūtakerua o 36 kia tae ki 6.
\text{true}\text{ and }6=\sqrt{36}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\text{true}\text{ and }6=6
Tātaitia te pūtakerua o 36 kia tae ki 6.
\text{true}\text{ and }\text{true}
Whakatauritea te 6 me te 6.
\text{true}
Ko te kōmititanga tōrunga o \text{true} me \text{true} ko \text{true}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}