Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{108}{3}+\frac{16}{3}}
Me tahuri te 36 ki te hautau \frac{108}{3}.
\sqrt{\frac{108+16}{3}}
Tā te mea he rite te tauraro o \frac{108}{3} me \frac{16}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{124}{3}}
Tāpirihia te 108 ki te 16, ka 124.
\frac{\sqrt{124}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{124}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{124}}{\sqrt{3}}.
\frac{2\sqrt{31}}{\sqrt{3}}
Tauwehea te 124=2^{2}\times 31. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 31} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{31}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{31}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{31}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{31}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{93}}{3}
Hei whakarea \sqrt{31} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.