Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{35}}{\sqrt{\frac{5+3}{5}}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\sqrt{35}}{\sqrt{\frac{8}{5}}}
Tāpirihia te 5 ki te 3, ka 8.
\frac{\sqrt{35}}{\frac{\sqrt{8}}{\sqrt{5}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{5}}.
\frac{\sqrt{35}}{\frac{2\sqrt{2}}{\sqrt{5}}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{35}}{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{35}}{\frac{2\sqrt{2}\sqrt{5}}{5}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{35}}{\frac{2\sqrt{10}}{5}}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{35}\times 5}{2\sqrt{10}}
Whakawehe \sqrt{35} ki te \frac{2\sqrt{10}}{5} mā te whakarea \sqrt{35} ki te tau huripoki o \frac{2\sqrt{10}}{5}.
\frac{\sqrt{35}\times 5\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{35}\times 5}{2\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{\sqrt{35}\times 5\sqrt{10}}{2\times 10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{\sqrt{350}\times 5}{2\times 10}
Hei whakarea \sqrt{35} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{350}\times 5}{20}
Whakareatia te 2 ki te 10, ka 20.
\frac{5\sqrt{14}\times 5}{20}
Tauwehea te 350=5^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 14} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{14}. Tuhia te pūtakerua o te 5^{2}.
\frac{25\sqrt{14}}{20}
Whakareatia te 5 ki te 5, ka 25.
\frac{5}{4}\sqrt{14}
Whakawehea te 25\sqrt{14} ki te 20, kia riro ko \frac{5}{4}\sqrt{14}.