Whakaoti mō x
x=7
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{333+49x}=19+x
Me tango -x mai i ngā taha e rua o te whārite.
\left(\sqrt{333+49x}\right)^{2}=\left(19+x\right)^{2}
Pūruatia ngā taha e rua o te whārite.
333+49x=\left(19+x\right)^{2}
Tātaihia te \sqrt{333+49x} mā te pū o 2, kia riro ko 333+49x.
333+49x=361+38x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(19+x\right)^{2}.
333+49x-361=38x+x^{2}
Tangohia te 361 mai i ngā taha e rua.
-28+49x=38x+x^{2}
Tangohia te 361 i te 333, ka -28.
-28+49x-38x=x^{2}
Tangohia te 38x mai i ngā taha e rua.
-28+11x=x^{2}
Pahekotia te 49x me -38x, ka 11x.
-28+11x-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+11x-28=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=11 ab=-\left(-28\right)=28
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,28 2,14 4,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 28.
1+28=29 2+14=16 4+7=11
Tātaihia te tapeke mō ia takirua.
a=7 b=4
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(-x^{2}+7x\right)+\left(4x-28\right)
Tuhia anō te -x^{2}+11x-28 hei \left(-x^{2}+7x\right)+\left(4x-28\right).
-x\left(x-7\right)+4\left(x-7\right)
Tauwehea te -x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-7\right)\left(-x+4\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=4
Hei kimi otinga whārite, me whakaoti te x-7=0 me te -x+4=0.
\sqrt{333+49\times 7}-7=19
Whakakapia te 7 mō te x i te whārite \sqrt{333+49x}-x=19.
19=19
Whakarūnātia. Ko te uara x=7 kua ngata te whārite.
\sqrt{333+49\times 4}-4=19
Whakakapia te 4 mō te x i te whārite \sqrt{333+49x}-x=19.
19=19
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=7 x=4
Rārangihia ngā rongoā katoa o \sqrt{49x+333}=x+19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}