Aromātai
\frac{256\sqrt{273}}{15}\approx 281.987612021
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{32\times 26\left(32-11\right)}\times \frac{32}{15}
Tangohia te 6 i te 32, ka 26.
\sqrt{832\left(32-11\right)}\times \frac{32}{15}
Whakareatia te 32 ki te 26, ka 832.
\sqrt{832\times 21}\times \frac{32}{15}
Tangohia te 11 i te 32, ka 21.
\sqrt{17472}\times \frac{32}{15}
Whakareatia te 832 ki te 21, ka 17472.
8\sqrt{273}\times \frac{32}{15}
Tauwehea te 17472=8^{2}\times 273. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 273} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{273}. Tuhia te pūtakerua o te 8^{2}.
\frac{8\times 32}{15}\sqrt{273}
Tuhia te 8\times \frac{32}{15} hei hautanga kotahi.
\frac{256}{15}\sqrt{273}
Whakareatia te 8 ki te 32, ka 256.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}