Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\sqrt{2}-\sqrt{75}-\sqrt{0\times 5}-2\sqrt{\frac{1}{3}}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
4\sqrt{2}-5\sqrt{3}-\sqrt{0\times 5}-2\sqrt{\frac{1}{3}}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
4\sqrt{2}-5\sqrt{3}-\sqrt{0}-2\sqrt{\frac{1}{3}}
Whakareatia te 0 ki te 5, ka 0.
4\sqrt{2}-5\sqrt{3}-0-2\sqrt{\frac{1}{3}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
4\sqrt{2}-5\sqrt{3}+0-2\sqrt{\frac{1}{3}}
Whakareatia te -1 ki te 0, ka 0.
4\sqrt{2}-5\sqrt{3}+0-2\times \frac{\sqrt{1}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
4\sqrt{2}-5\sqrt{3}+0-2\times \frac{1}{\sqrt{3}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
4\sqrt{2}-5\sqrt{3}+0-2\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
4\sqrt{2}-5\sqrt{3}+0-2\times \frac{\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
4\sqrt{2}-5\sqrt{3}+0+\frac{-2\sqrt{3}}{3}
Tuhia te -2\times \frac{\sqrt{3}}{3} hei hautanga kotahi.
\frac{3\left(4\sqrt{2}-5\sqrt{3}+0\right)}{3}+\frac{-2\sqrt{3}}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 4\sqrt{2}-5\sqrt{3}+0 ki te \frac{3}{3}.
\frac{3\left(4\sqrt{2}-5\sqrt{3}+0\right)-2\sqrt{3}}{3}
Tā te mea he rite te tauraro o \frac{3\left(4\sqrt{2}-5\sqrt{3}+0\right)}{3} me \frac{-2\sqrt{3}}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12\sqrt{2}-15\sqrt{3}-2\sqrt{3}}{3}
Mahia ngā whakarea i roto o 3\left(4\sqrt{2}-5\sqrt{3}+0\right)-2\sqrt{3}.
\frac{12\sqrt{2}-17\sqrt{3}}{3}
Mahia ngā tātaitai i roto o 12\sqrt{2}-15\sqrt{3}-2\sqrt{3}.