Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{30}\times \frac{\sqrt{5}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\sqrt{30}\times \frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{30}\times \frac{\sqrt{5}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{30}\times \frac{\sqrt{15}}{3}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{30}\sqrt{15}}{3}
Tuhia te \sqrt{30}\times \frac{\sqrt{15}}{3} hei hautanga kotahi.
\frac{\sqrt{15}\sqrt{2}\sqrt{15}}{3}
Tauwehea te 30=15\times 2. Tuhia anō te pūtake rua o te hua \sqrt{15\times 2} hei hua o ngā pūtake rua \sqrt{15}\sqrt{2}.
\frac{15\sqrt{2}}{3}
Whakareatia te \sqrt{15} ki te \sqrt{15}, ka 15.
5\sqrt{2}
Whakawehea te 15\sqrt{2} ki te 3, kia riro ko 5\sqrt{2}.