Whakaoti mō x
x=15
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3x+4}-7-\left(-7\right)=-\left(-7\right)
Me tāpiri 7 ki ngā taha e rua o te whārite.
\sqrt{3x+4}=-\left(-7\right)
Mā te tango i te -7 i a ia ake anō ka toe ko te 0.
\sqrt{3x+4}=7
Tango -7 mai i 0.
3x+4=49
Pūruatia ngā taha e rua o te whārite.
3x+4-4=49-4
Me tango 4 mai i ngā taha e rua o te whārite.
3x=49-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
3x=45
Tango 4 mai i 49.
\frac{3x}{3}=\frac{45}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{45}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x=15
Whakawehe 45 ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}