Whakaoti mō x
x=20
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3x+4}=4+\sqrt{x-4}
Me tango -\sqrt{x-4} mai i ngā taha e rua o te whārite.
\left(\sqrt{3x+4}\right)^{2}=\left(4+\sqrt{x-4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3x+4=\left(4+\sqrt{x-4}\right)^{2}
Tātaihia te \sqrt{3x+4} mā te pū o 2, kia riro ko 3x+4.
3x+4=16+8\sqrt{x-4}+\left(\sqrt{x-4}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+\sqrt{x-4}\right)^{2}.
3x+4=16+8\sqrt{x-4}+x-4
Tātaihia te \sqrt{x-4} mā te pū o 2, kia riro ko x-4.
3x+4=12+8\sqrt{x-4}+x
Tangohia te 4 i te 16, ka 12.
3x+4-\left(12+x\right)=8\sqrt{x-4}
Me tango 12+x mai i ngā taha e rua o te whārite.
3x+4-12-x=8\sqrt{x-4}
Hei kimi i te tauaro o 12+x, kimihia te tauaro o ia taurangi.
3x-8-x=8\sqrt{x-4}
Tangohia te 12 i te 4, ka -8.
2x-8=8\sqrt{x-4}
Pahekotia te 3x me -x, ka 2x.
\left(2x-8\right)^{2}=\left(8\sqrt{x-4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4x^{2}-32x+64=\left(8\sqrt{x-4}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-8\right)^{2}.
4x^{2}-32x+64=8^{2}\left(\sqrt{x-4}\right)^{2}
Whakarohaina te \left(8\sqrt{x-4}\right)^{2}.
4x^{2}-32x+64=64\left(\sqrt{x-4}\right)^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
4x^{2}-32x+64=64\left(x-4\right)
Tātaihia te \sqrt{x-4} mā te pū o 2, kia riro ko x-4.
4x^{2}-32x+64=64x-256
Whakamahia te āhuatanga tohatoha hei whakarea te 64 ki te x-4.
4x^{2}-32x+64-64x=-256
Tangohia te 64x mai i ngā taha e rua.
4x^{2}-96x+64=-256
Pahekotia te -32x me -64x, ka -96x.
4x^{2}-96x+64+256=0
Me tāpiri te 256 ki ngā taha e rua.
4x^{2}-96x+320=0
Tāpirihia te 64 ki te 256, ka 320.
x=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\times 4\times 320}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -96 mō b, me 320 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-96\right)±\sqrt{9216-4\times 4\times 320}}{2\times 4}
Pūrua -96.
x=\frac{-\left(-96\right)±\sqrt{9216-16\times 320}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-96\right)±\sqrt{9216-5120}}{2\times 4}
Whakareatia -16 ki te 320.
x=\frac{-\left(-96\right)±\sqrt{4096}}{2\times 4}
Tāpiri 9216 ki te -5120.
x=\frac{-\left(-96\right)±64}{2\times 4}
Tuhia te pūtakerua o te 4096.
x=\frac{96±64}{2\times 4}
Ko te tauaro o -96 ko 96.
x=\frac{96±64}{8}
Whakareatia 2 ki te 4.
x=\frac{160}{8}
Nā, me whakaoti te whārite x=\frac{96±64}{8} ina he tāpiri te ±. Tāpiri 96 ki te 64.
x=20
Whakawehe 160 ki te 8.
x=\frac{32}{8}
Nā, me whakaoti te whārite x=\frac{96±64}{8} ina he tango te ±. Tango 64 mai i 96.
x=4
Whakawehe 32 ki te 8.
x=20 x=4
Kua oti te whārite te whakatau.
\sqrt{3\times 20+4}-\sqrt{20-4}=4
Whakakapia te 20 mō te x i te whārite \sqrt{3x+4}-\sqrt{x-4}=4.
4=4
Whakarūnātia. Ko te uara x=20 kua ngata te whārite.
\sqrt{3\times 4+4}-\sqrt{4-4}=4
Whakakapia te 4 mō te x i te whārite \sqrt{3x+4}-\sqrt{x-4}=4.
4=4
Whakarūnātia. Ko te uara x=4 kua ngata te whārite.
x=20 x=4
Rārangihia ngā rongoā katoa o \sqrt{3x+4}=\sqrt{x-4}+4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}