Whakaoti mō x
x=5
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3x+1}=1+\sqrt{2x-1}
Me tango -\sqrt{2x-1} mai i ngā taha e rua o te whārite.
\left(\sqrt{3x+1}\right)^{2}=\left(1+\sqrt{2x-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3x+1=\left(1+\sqrt{2x-1}\right)^{2}
Tātaihia te \sqrt{3x+1} mā te pū o 2, kia riro ko 3x+1.
3x+1=1+2\sqrt{2x-1}+\left(\sqrt{2x-1}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{2x-1}\right)^{2}.
3x+1=1+2\sqrt{2x-1}+2x-1
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
3x+1=2\sqrt{2x-1}+2x
Tangohia te 1 i te 1, ka 0.
3x+1-2x=2\sqrt{2x-1}
Me tango 2x mai i ngā taha e rua o te whārite.
x+1=2\sqrt{2x-1}
Pahekotia te 3x me -2x, ka x.
\left(x+1\right)^{2}=\left(2\sqrt{2x-1}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+2x+1=\left(2\sqrt{2x-1}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}+2x+1=2^{2}\left(\sqrt{2x-1}\right)^{2}
Whakarohaina te \left(2\sqrt{2x-1}\right)^{2}.
x^{2}+2x+1=4\left(\sqrt{2x-1}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x^{2}+2x+1=4\left(2x-1\right)
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
x^{2}+2x+1=8x-4
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x-1.
x^{2}+2x+1-8x=-4
Tangohia te 8x mai i ngā taha e rua.
x^{2}-6x+1=-4
Pahekotia te 2x me -8x, ka -6x.
x^{2}-6x+1+4=0
Me tāpiri te 4 ki ngā taha e rua.
x^{2}-6x+5=0
Tāpirihia te 1 ki te 4, ka 5.
a+b=-6 ab=5
Hei whakaoti i te whārite, whakatauwehea te x^{2}-6x+5 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=-5 b=-1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(x-5\right)\left(x-1\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=5 x=1
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x-1=0.
\sqrt{3\times 5+1}-\sqrt{2\times 5-1}=1
Whakakapia te 5 mō te x i te whārite \sqrt{3x+1}-\sqrt{2x-1}=1.
1=1
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
\sqrt{3\times 1+1}-\sqrt{2\times 1-1}=1
Whakakapia te 1 mō te x i te whārite \sqrt{3x+1}-\sqrt{2x-1}=1.
1=1
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=5 x=1
Rārangihia ngā rongoā katoa o \sqrt{3x+1}=\sqrt{2x-1}+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}