Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{3x+1}=3x-1
Me tango 1 mai i ngā taha e rua o te whārite.
\left(\sqrt{3x+1}\right)^{2}=\left(3x-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3x+1=\left(3x-1\right)^{2}
Tātaihia te \sqrt{3x+1} mā te pū o 2, kia riro ko 3x+1.
3x+1=9x^{2}-6x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
3x+1-9x^{2}=-6x+1
Tangohia te 9x^{2} mai i ngā taha e rua.
3x+1-9x^{2}+6x=1
Me tāpiri te 6x ki ngā taha e rua.
9x+1-9x^{2}=1
Pahekotia te 3x me 6x, ka 9x.
9x+1-9x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
9x-9x^{2}=0
Tangohia te 1 i te 1, ka 0.
x\left(9-9x\right)=0
Tauwehea te x.
x=0 x=1
Hei kimi otinga whārite, me whakaoti te x=0 me te 9-9x=0.
\sqrt{3\times 0+1}+1=3\times 0
Whakakapia te 0 mō te x i te whārite \sqrt{3x+1}+1=3x.
2=0
Whakarūnātia. Ko te uara x=0 kāore e ngata ana ki te whārite.
\sqrt{3\times 1+1}+1=3\times 1
Whakakapia te 1 mō te x i te whārite \sqrt{3x+1}+1=3x.
3=3
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite \sqrt{3x+1}=3x-1 he rongoā ahurei.