Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3x+1}=3x-1
Me tango 1 mai i ngā taha e rua o te whārite.
\left(\sqrt{3x+1}\right)^{2}=\left(3x-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3x+1=\left(3x-1\right)^{2}
Tātaihia te \sqrt{3x+1} mā te pū o 2, kia riro ko 3x+1.
3x+1=9x^{2}-6x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(3x-1\right)^{2}.
3x+1-9x^{2}=-6x+1
Tangohia te 9x^{2} mai i ngā taha e rua.
3x+1-9x^{2}+6x=1
Me tāpiri te 6x ki ngā taha e rua.
9x+1-9x^{2}=1
Pahekotia te 3x me 6x, ka 9x.
9x+1-9x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
9x-9x^{2}=0
Tangohia te 1 i te 1, ka 0.
x\left(9-9x\right)=0
Tauwehea te x.
x=0 x=1
Hei kimi otinga whārite, me whakaoti te x=0 me te 9-9x=0.
\sqrt{3\times 0+1}+1=3\times 0
Whakakapia te 0 mō te x i te whārite \sqrt{3x+1}+1=3x.
2=0
Whakarūnātia. Ko te uara x=0 kāore e ngata ana ki te whārite.
\sqrt{3\times 1+1}+1=3\times 1
Whakakapia te 1 mō te x i te whārite \sqrt{3x+1}+1=3x.
3=3
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
x=1
Ko te whārite \sqrt{3x+1}=3x-1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}