Whakaoti mō n
n = \frac{17}{3} = 5\frac{2}{3} \approx 5.666666667
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3n+8}-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
\sqrt{3n+8}=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
\sqrt{3n+8}=5
Tango -5 mai i 0.
3n+8=25
Pūruatia ngā taha e rua o te whārite.
3n+8-8=25-8
Me tango 8 mai i ngā taha e rua o te whārite.
3n=25-8
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
3n=17
Tango 8 mai i 25.
\frac{3n}{3}=\frac{17}{3}
Whakawehea ngā taha e rua ki te 3.
n=\frac{17}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}