Whakaoti mō a
a=0
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{3a}-\sqrt{2a}\right)^{2}=\left(\sqrt{a}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{3a}\right)^{2}-2\sqrt{3a}\sqrt{2a}+\left(\sqrt{2a}\right)^{2}=\left(\sqrt{a}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3a}-\sqrt{2a}\right)^{2}.
3a-2\sqrt{3a}\sqrt{2a}+\left(\sqrt{2a}\right)^{2}=\left(\sqrt{a}\right)^{2}
Tātaihia te \sqrt{3a} mā te pū o 2, kia riro ko 3a.
3a-2\sqrt{3a}\sqrt{2a}+2a=\left(\sqrt{a}\right)^{2}
Tātaihia te \sqrt{2a} mā te pū o 2, kia riro ko 2a.
5a-2\sqrt{3a}\sqrt{2a}=\left(\sqrt{a}\right)^{2}
Pahekotia te 3a me 2a, ka 5a.
5a-2\sqrt{3a}\sqrt{2a}=a
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
-2\sqrt{3a}\sqrt{2a}=a-5a
Me tango 5a mai i ngā taha e rua o te whārite.
-2\sqrt{3a}\sqrt{2a}=-4a
Pahekotia te a me -5a, ka -4a.
\left(-2\sqrt{3a}\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-2\right)^{2}\left(\sqrt{3a}\right)^{2}\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Whakarohaina te \left(-2\sqrt{3a}\sqrt{2a}\right)^{2}.
4\left(\sqrt{3a}\right)^{2}\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4\times 3a\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Tātaihia te \sqrt{3a} mā te pū o 2, kia riro ko 3a.
12a\left(\sqrt{2a}\right)^{2}=\left(-4a\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
12a\times 2a=\left(-4a\right)^{2}
Tātaihia te \sqrt{2a} mā te pū o 2, kia riro ko 2a.
24aa=\left(-4a\right)^{2}
Whakareatia te 12 ki te 2, ka 24.
24a^{2}=\left(-4a\right)^{2}
Whakareatia te a ki te a, ka a^{2}.
24a^{2}=\left(-4\right)^{2}a^{2}
Whakarohaina te \left(-4a\right)^{2}.
24a^{2}=16a^{2}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
24a^{2}-16a^{2}=0
Tangohia te 16a^{2} mai i ngā taha e rua.
8a^{2}=0
Pahekotia te 24a^{2} me -16a^{2}, ka 8a^{2}.
a^{2}=0
Whakawehea ngā taha e rua ki te 8. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
a=0 a=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
\sqrt{3\times 0}-\sqrt{2\times 0}=\sqrt{0}
Whakakapia te 0 mō te a i te whārite \sqrt{3a}-\sqrt{2a}=\sqrt{a}.
0=0
Whakarūnātia. Ko te uara a=0 kua ngata te whārite.
a=0
Ko te whārite \sqrt{3a}-\sqrt{2a}=\sqrt{a} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}