Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3-x}=-\left(-x+3\right)
Me tango -x+3 mai i ngā taha e rua o te whārite.
\sqrt{3-x}=-\left(-x\right)-3
Hei kimi i te tauaro o -x+3, kimihia te tauaro o ia taurangi.
\sqrt{3-x}=x-3
Ko te tauaro o -x ko x.
\left(\sqrt{3-x}\right)^{2}=\left(x-3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
3-x=\left(x-3\right)^{2}
Tātaihia te \sqrt{3-x} mā te pū o 2, kia riro ko 3-x.
3-x=x^{2}-6x+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
3-x-x^{2}=-6x+9
Tangohia te x^{2} mai i ngā taha e rua.
3-x-x^{2}+6x=9
Me tāpiri te 6x ki ngā taha e rua.
3+5x-x^{2}=9
Pahekotia te -x me 6x, ka 5x.
3+5x-x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
-6+5x-x^{2}=0
Tangohia te 9 i te 3, ka -6.
-x^{2}+5x-6=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=5 ab=-\left(-6\right)=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=3 b=2
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-x^{2}+3x\right)+\left(2x-6\right)
Tuhia anō te -x^{2}+5x-6 hei \left(-x^{2}+3x\right)+\left(2x-6\right).
-x\left(x-3\right)+2\left(x-3\right)
Tauwehea te -x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(-x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x+2=0.
\sqrt{3-3}-3+3=0
Whakakapia te 3 mō te x i te whārite \sqrt{3-x}-x+3=0.
0=0
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
\sqrt{3-2}-2+3=0
Whakakapia te 2 mō te x i te whārite \sqrt{3-x}-x+3=0.
2=0
Whakarūnātia. Ko te uara x=2 kāore e ngata ana ki te whārite.
x=3
Ko te whārite \sqrt{3-x}=x-3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}