Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{3\left(-3\right)^{2}+\frac{7-4\times 2^{3}}{3}}
Tangohia te 5 i te 2, ka -3.
\sqrt{3\times 9+\frac{7-4\times 2^{3}}{3}}
Tātaihia te -3 mā te pū o 2, kia riro ko 9.
\sqrt{27+\frac{7-4\times 2^{3}}{3}}
Whakareatia te 3 ki te 9, ka 27.
\sqrt{27+\frac{7-4\times 8}{3}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\sqrt{27+\frac{7-32}{3}}
Whakareatia te 4 ki te 8, ka 32.
\sqrt{27+\frac{-25}{3}}
Tangohia te 32 i te 7, ka -25.
\sqrt{27-\frac{25}{3}}
Ka taea te hautanga \frac{-25}{3} te tuhi anō ko -\frac{25}{3} mā te tango i te tohu tōraro.
\sqrt{\frac{56}{3}}
Tangohia te \frac{25}{3} i te 27, ka \frac{56}{3}.
\frac{\sqrt{56}}{\sqrt{3}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{56}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{56}}{\sqrt{3}}.
\frac{2\sqrt{14}}{\sqrt{3}}
Tauwehea te 56=2^{2}\times 14. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 14} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{14}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{14}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{14}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{14}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{42}}{3}
Hei whakarea \sqrt{14} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.