Whakaoti mō x
x=30\sqrt{3}+50\approx 101.961524227
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{3}x-20\sqrt{3}=40+x
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{3} ki te x-20.
\sqrt{3}x-20\sqrt{3}-x=40
Tangohia te x mai i ngā taha e rua.
\sqrt{3}x-x=40+20\sqrt{3}
Me tāpiri te 20\sqrt{3} ki ngā taha e rua.
\left(\sqrt{3}-1\right)x=40+20\sqrt{3}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(\sqrt{3}-1\right)x=20\sqrt{3}+40
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{3}-1\right)x}{\sqrt{3}-1}=\frac{20\sqrt{3}+40}{\sqrt{3}-1}
Whakawehea ngā taha e rua ki te \sqrt{3}-1.
x=\frac{20\sqrt{3}+40}{\sqrt{3}-1}
Mā te whakawehe ki te \sqrt{3}-1 ka wetekia te whakareanga ki te \sqrt{3}-1.
x=30\sqrt{3}+50
Whakawehe 40+20\sqrt{3} ki te \sqrt{3}-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}