Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{\frac{15+1}{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Whakareatia te 3 ki te 5, ka 15.
\frac{\sqrt{\frac{16}{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Tāpirihia te 15 ki te 1, ka 16.
\frac{\frac{\sqrt{16}}{\sqrt{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{16}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{16}}{\sqrt{5}}.
\frac{\frac{4}{\sqrt{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Tātaitia te pūtakerua o 16 kia tae ki 4.
\frac{\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{1\times 5+5}{5}}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{\frac{1\times 5+5}{5}}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{\frac{5+5}{5}}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{\frac{10}{5}}}
Tāpirihia te 5 ki te 5, ka 10.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{2}}
Whakawehea te 10 ki te 5, kia riro ko 2.
\frac{4\sqrt{5}}{5\sqrt{2}}
Tuhia te \frac{\frac{4\sqrt{5}}{5}}{\sqrt{2}} hei hautanga kotahi.
\frac{4\sqrt{5}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4\sqrt{5}}{5\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{4\sqrt{5}\sqrt{2}}{5\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4\sqrt{10}}{5\times 2}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{4\sqrt{10}}{10}
Whakareatia te 5 ki te 2, ka 10.
\frac{2}{5}\sqrt{10}
Whakawehea te 4\sqrt{10} ki te 10, kia riro ko \frac{2}{5}\sqrt{10}.