Aromātai
\frac{2\sqrt{10}}{5}\approx 1.264911064
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{\frac{15+1}{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Whakareatia te 3 ki te 5, ka 15.
\frac{\sqrt{\frac{16}{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Tāpirihia te 15 ki te 1, ka 16.
\frac{\frac{\sqrt{16}}{\sqrt{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{16}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{16}}{\sqrt{5}}.
\frac{\frac{4}{\sqrt{5}}}{\sqrt{\frac{1\times 5+5}{5}}}
Tātaitia te pūtakerua o 16 kia tae ki 4.
\frac{\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{1\times 5+5}{5}}}
Whakangāwaritia te tauraro o \frac{4}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{\frac{1\times 5+5}{5}}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{\frac{5+5}{5}}}
Whakareatia te 1 ki te 5, ka 5.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{\frac{10}{5}}}
Tāpirihia te 5 ki te 5, ka 10.
\frac{\frac{4\sqrt{5}}{5}}{\sqrt{2}}
Whakawehea te 10 ki te 5, kia riro ko 2.
\frac{4\sqrt{5}}{5\sqrt{2}}
Tuhia te \frac{\frac{4\sqrt{5}}{5}}{\sqrt{2}} hei hautanga kotahi.
\frac{4\sqrt{5}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4\sqrt{5}}{5\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{4\sqrt{5}\sqrt{2}}{5\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4\sqrt{10}}{5\times 2}
Hei whakarea \sqrt{5} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{4\sqrt{10}}{10}
Whakareatia te 5 ki te 2, ka 10.
\frac{2}{5}\sqrt{10}
Whakawehea te 4\sqrt{10} ki te 10, kia riro ko \frac{2}{5}\sqrt{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}