Aromātai
\frac{135\sqrt{3}}{4}\approx 58.456714755
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{3}\sqrt{9}\sqrt{12}\times \frac{5}{8}\sqrt{3}
Tauwehea te 27=3\times 9. Tuhia anō te pūtake rua o te hua \sqrt{3\times 9} hei hua o ngā pūtake rua \sqrt{3}\sqrt{9}.
3\times 3\sqrt{12}\times \frac{5}{8}\sqrt{9}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
9\sqrt{12}\times \frac{5}{8}\sqrt{9}
Whakareatia te 3 ki te 3, ka 9.
9\times 2\sqrt{3}\times \frac{5}{8}\sqrt{9}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
18\sqrt{3}\times \frac{5}{8}\sqrt{9}
Whakareatia te 9 ki te 2, ka 18.
\frac{18\times 5}{8}\sqrt{3}\sqrt{9}
Tuhia te 18\times \frac{5}{8} hei hautanga kotahi.
\frac{90}{8}\sqrt{3}\sqrt{9}
Whakareatia te 18 ki te 5, ka 90.
\frac{45}{4}\sqrt{3}\sqrt{9}
Whakahekea te hautanga \frac{90}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{45}{4}\sqrt{3}\times 3
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{45\times 3}{4}\sqrt{3}
Tuhia te \frac{45}{4}\times 3 hei hautanga kotahi.
\frac{135}{4}\sqrt{3}
Whakareatia te 45 ki te 3, ka 135.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}