Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\sqrt{3}\sqrt{9}\sqrt{12}\times \frac{5}{8}\sqrt{3}
Tauwehea te 27=3\times 9. Tuhia anō te pūtake rua o te hua \sqrt{3\times 9} hei hua o ngā pūtake rua \sqrt{3}\sqrt{9}.
3\times 3\sqrt{12}\times \frac{5}{8}\sqrt{9}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
9\sqrt{12}\times \frac{5}{8}\sqrt{9}
Whakareatia te 3 ki te 3, ka 9.
9\times 2\sqrt{3}\times \frac{5}{8}\sqrt{9}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
18\sqrt{3}\times \frac{5}{8}\sqrt{9}
Whakareatia te 9 ki te 2, ka 18.
\frac{18\times 5}{8}\sqrt{3}\sqrt{9}
Tuhia te 18\times \frac{5}{8} hei hautanga kotahi.
\frac{90}{8}\sqrt{3}\sqrt{9}
Whakareatia te 18 ki te 5, ka 90.
\frac{45}{4}\sqrt{3}\sqrt{9}
Whakahekea te hautanga \frac{90}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{45}{4}\sqrt{3}\times 3
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{45\times 3}{4}\sqrt{3}
Tuhia te \frac{45}{4}\times 3 hei hautanga kotahi.
\frac{135}{4}\sqrt{3}
Whakareatia te 45 ki te 3, ka 135.