Whakaoti mō x (complex solution)
x=-\sqrt{11}i\approx -0-3.31662479i
x=\sqrt{11}i\approx 3.31662479i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{25-x^{2}}=4+\sqrt{15+x^{2}}
Me tango -\sqrt{15+x^{2}} mai i ngā taha e rua o te whārite.
\left(\sqrt{25-x^{2}}\right)^{2}=\left(4+\sqrt{15+x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
25-x^{2}=\left(4+\sqrt{15+x^{2}}\right)^{2}
Tātaihia te \sqrt{25-x^{2}} mā te pū o 2, kia riro ko 25-x^{2}.
25-x^{2}=16+8\sqrt{15+x^{2}}+\left(\sqrt{15+x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(4+\sqrt{15+x^{2}}\right)^{2}.
25-x^{2}=16+8\sqrt{15+x^{2}}+15+x^{2}
Tātaihia te \sqrt{15+x^{2}} mā te pū o 2, kia riro ko 15+x^{2}.
25-x^{2}=31+8\sqrt{15+x^{2}}+x^{2}
Tāpirihia te 16 ki te 15, ka 31.
25-x^{2}-\left(31+x^{2}\right)=8\sqrt{15+x^{2}}
Me tango 31+x^{2} mai i ngā taha e rua o te whārite.
25-x^{2}-31-x^{2}=8\sqrt{15+x^{2}}
Hei kimi i te tauaro o 31+x^{2}, kimihia te tauaro o ia taurangi.
-6-x^{2}-x^{2}=8\sqrt{15+x^{2}}
Tangohia te 31 i te 25, ka -6.
-6-2x^{2}=8\sqrt{15+x^{2}}
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
\left(-6-2x^{2}\right)^{2}=\left(8\sqrt{15+x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
36+24x^{2}+4\left(x^{2}\right)^{2}=\left(8\sqrt{15+x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-6-2x^{2}\right)^{2}.
36+24x^{2}+4x^{4}=\left(8\sqrt{15+x^{2}}\right)^{2}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
36+24x^{2}+4x^{4}=8^{2}\left(\sqrt{15+x^{2}}\right)^{2}
Whakarohaina te \left(8\sqrt{15+x^{2}}\right)^{2}.
36+24x^{2}+4x^{4}=64\left(\sqrt{15+x^{2}}\right)^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
36+24x^{2}+4x^{4}=64\left(15+x^{2}\right)
Tātaihia te \sqrt{15+x^{2}} mā te pū o 2, kia riro ko 15+x^{2}.
36+24x^{2}+4x^{4}=960+64x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 64 ki te 15+x^{2}.
36+24x^{2}+4x^{4}-960=64x^{2}
Tangohia te 960 mai i ngā taha e rua.
-924+24x^{2}+4x^{4}=64x^{2}
Tangohia te 960 i te 36, ka -924.
-924+24x^{2}+4x^{4}-64x^{2}=0
Tangohia te 64x^{2} mai i ngā taha e rua.
-924-40x^{2}+4x^{4}=0
Pahekotia te 24x^{2} me -64x^{2}, ka -40x^{2}.
4t^{2}-40t-924=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 4\left(-924\right)}}{2\times 4}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 4 mō te a, te -40 mō te b, me te -924 mō te c i te ture pūrua.
t=\frac{40±128}{8}
Mahia ngā tātaitai.
t=21 t=-11
Whakaotia te whārite t=\frac{40±128}{8} ina he tōrunga te ±, ina he tōraro te ±.
x=-\sqrt{21} x=\sqrt{21} x=-\sqrt{11}i x=\sqrt{11}i
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
\sqrt{25-\left(-\sqrt{21}\right)^{2}}-\sqrt{15+\left(-\sqrt{21}\right)^{2}}=4
Whakakapia te -\sqrt{21} mō te x i te whārite \sqrt{25-x^{2}}-\sqrt{15+x^{2}}=4.
-4=4
Whakarūnātia. Ko te uara x=-\sqrt{21} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{25-\left(\sqrt{21}\right)^{2}}-\sqrt{15+\left(\sqrt{21}\right)^{2}}=4
Whakakapia te \sqrt{21} mō te x i te whārite \sqrt{25-x^{2}}-\sqrt{15+x^{2}}=4.
-4=4
Whakarūnātia. Ko te uara x=\sqrt{21} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{25-\left(-\sqrt{11}i\right)^{2}}-\sqrt{15+\left(-\sqrt{11}i\right)^{2}}=4
Whakakapia te -\sqrt{11}i mō te x i te whārite \sqrt{25-x^{2}}-\sqrt{15+x^{2}}=4.
4=4
Whakarūnātia. Ko te uara x=-\sqrt{11}i kua ngata te whārite.
\sqrt{25-\left(\sqrt{11}i\right)^{2}}-\sqrt{15+\left(\sqrt{11}i\right)^{2}}=4
Whakakapia te \sqrt{11}i mō te x i te whārite \sqrt{25-x^{2}}-\sqrt{15+x^{2}}=4.
4=4
Whakarūnātia. Ko te uara x=\sqrt{11}i kua ngata te whārite.
x=-\sqrt{11}i x=\sqrt{11}i
Rārangihia ngā rongoā katoa o \sqrt{25-x^{2}}=\sqrt{x^{2}+15}+4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}