Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
5-\sqrt{\frac{1}{9}}-\frac{11}{3}
Tātaitia te pūtakerua o 25 kia tae ki 5.
5-\frac{1}{3}-\frac{11}{3}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{15}{3}-\frac{1}{3}-\frac{11}{3}
Me tahuri te 5 ki te hautau \frac{15}{3}.
\frac{15-1}{3}-\frac{11}{3}
Tā te mea he rite te tauraro o \frac{15}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{14}{3}-\frac{11}{3}
Tangohia te 1 i te 15, ka 14.
\frac{14-11}{3}
Tā te mea he rite te tauraro o \frac{14}{3} me \frac{11}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{3}
Tangohia te 11 i te 14, ka 3.
1
Whakawehea te 3 ki te 3, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}