Aromātai
\frac{25\sqrt{314}}{157}\approx 2.82166324
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{2500}{314}}
Whakarohaina te \frac{25}{3.14} mā te whakarea i te taurunga me te tauraro ki te 100.
\sqrt{\frac{1250}{157}}
Whakahekea te hautanga \frac{2500}{314} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{1250}}{\sqrt{157}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1250}{157}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1250}}{\sqrt{157}}.
\frac{25\sqrt{2}}{\sqrt{157}}
Tauwehea te 1250=25^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{25^{2}\times 2} hei hua o ngā pūtake rua \sqrt{25^{2}}\sqrt{2}. Tuhia te pūtakerua o te 25^{2}.
\frac{25\sqrt{2}\sqrt{157}}{\left(\sqrt{157}\right)^{2}}
Whakangāwaritia te tauraro o \frac{25\sqrt{2}}{\sqrt{157}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{157}.
\frac{25\sqrt{2}\sqrt{157}}{157}
Ko te pūrua o \sqrt{157} ko 157.
\frac{25\sqrt{314}}{157}
Hei whakarea \sqrt{2} me \sqrt{157}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}