Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{6}-\sqrt{\frac{1}{2}}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{6}-\frac{\sqrt{1}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
2\sqrt{6}-\frac{1}{\sqrt{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
2\sqrt{6}-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\sqrt{6}-\frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\times 2\sqrt{6}}{2}-\frac{\sqrt{2}}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2\sqrt{6} ki te \frac{2}{2}.
\frac{2\times 2\sqrt{6}-\sqrt{2}}{2}
Tā te mea he rite te tauraro o \frac{2\times 2\sqrt{6}}{2} me \frac{\sqrt{2}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{4\sqrt{6}-\sqrt{2}}{2}
Mahia ngā whakarea i roto o 2\times 2\sqrt{6}-\sqrt{2}.