Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{6}\sqrt{\frac{1}{6}}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{6}\times \frac{\sqrt{1}}{\sqrt{6}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
2\sqrt{6}\times \frac{1}{\sqrt{6}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
2\sqrt{6}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
2\sqrt{6}\times \frac{\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{6}}{3}\sqrt{6}
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 2 me te 6.
\frac{\sqrt{6}\sqrt{6}}{3}
Tuhia te \frac{\sqrt{6}}{3}\sqrt{6} hei hautanga kotahi.
\frac{6}{3}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
2
Whakawehea te 6 ki te 3, kia riro ko 2.