Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{6}\sqrt{\frac{1}{6}}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{6}\times \frac{\sqrt{1}}{\sqrt{6}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
2\sqrt{6}\times \frac{1}{\sqrt{6}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
2\sqrt{6}\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
2\sqrt{6}\times \frac{\sqrt{6}}{6}
Ko te pūrua o \sqrt{6} ko 6.
\frac{\sqrt{6}}{3}\sqrt{6}
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 2 me te 6.
\frac{\sqrt{6}\sqrt{6}}{3}
Tuhia te \frac{\sqrt{6}}{3}\sqrt{6} hei hautanga kotahi.
\frac{6}{3}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
2
Whakawehea te 6 ki te 3, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}