Tīpoka ki ngā ihirangi matua
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2z+3}\right)^{2}=\left(-z\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2z+3=\left(-z\right)^{2}
Tātaihia te \sqrt{2z+3} mā te pū o 2, kia riro ko 2z+3.
2z+3=z^{2}
Tātaihia te -z mā te pū o 2, kia riro ko z^{2}.
2z+3-z^{2}=0
Tangohia te z^{2} mai i ngā taha e rua.
-z^{2}+2z+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -z^{2}+az+bz+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-z^{2}+3z\right)+\left(-z+3\right)
Tuhia anō te -z^{2}+2z+3 hei \left(-z^{2}+3z\right)+\left(-z+3\right).
-z\left(z-3\right)-\left(z-3\right)
Tauwehea te -z i te tuatahi me te -1 i te rōpū tuarua.
\left(z-3\right)\left(-z-1\right)
Whakatauwehea atu te kīanga pātahi z-3 mā te whakamahi i te āhuatanga tātai tohatoha.
z=3 z=-1
Hei kimi otinga whārite, me whakaoti te z-3=0 me te -z-1=0.
\sqrt{2\times 3+3}=-3
Whakakapia te 3 mō te z i te whārite \sqrt{2z+3}=-z.
3=-3
Whakarūnātia. Ko te uara z=3 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{2\left(-1\right)+3}=-\left(-1\right)
Whakakapia te -1 mō te z i te whārite \sqrt{2z+3}=-z.
1=1
Whakarūnātia. Ko te uara z=-1 kua ngata te whārite.
z=-1
Ko te whārite \sqrt{2z+3}=-z he rongoā ahurei.