Whakaoti mō z
z=-1
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2z+3}\right)^{2}=\left(-z\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2z+3=\left(-z\right)^{2}
Tātaihia te \sqrt{2z+3} mā te pū o 2, kia riro ko 2z+3.
2z+3=z^{2}
Tātaihia te -z mā te pū o 2, kia riro ko z^{2}.
2z+3-z^{2}=0
Tangohia te z^{2} mai i ngā taha e rua.
-z^{2}+2z+3=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -z^{2}+az+bz+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-z^{2}+3z\right)+\left(-z+3\right)
Tuhia anō te -z^{2}+2z+3 hei \left(-z^{2}+3z\right)+\left(-z+3\right).
-z\left(z-3\right)-\left(z-3\right)
Tauwehea te -z i te tuatahi me te -1 i te rōpū tuarua.
\left(z-3\right)\left(-z-1\right)
Whakatauwehea atu te kīanga pātahi z-3 mā te whakamahi i te āhuatanga tātai tohatoha.
z=3 z=-1
Hei kimi otinga whārite, me whakaoti te z-3=0 me te -z-1=0.
\sqrt{2\times 3+3}=-3
Whakakapia te 3 mō te z i te whārite \sqrt{2z+3}=-z.
3=-3
Whakarūnātia. Ko te uara z=3 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{2\left(-1\right)+3}=-\left(-1\right)
Whakakapia te -1 mō te z i te whārite \sqrt{2z+3}=-z.
1=1
Whakarūnātia. Ko te uara z=-1 kua ngata te whārite.
z=-1
Ko te whārite \sqrt{2z+3}=-z he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}