Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2x-3}\right)^{2}=\left(6^{2}x\sqrt{4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x-3=\left(6^{2}x\sqrt{4}\right)^{2}
Tātaihia te \sqrt{2x-3} mā te pū o 2, kia riro ko 2x-3.
2x-3=\left(36x\sqrt{4}\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
2x-3=\left(36x\times 2\right)^{2}
Tātaitia te pūtakerua o 4 kia tae ki 2.
2x-3=\left(72x\right)^{2}
Whakareatia te 36 ki te 2, ka 72.
2x-3=72^{2}x^{2}
Whakarohaina te \left(72x\right)^{2}.
2x-3=5184x^{2}
Tātaihia te 72 mā te pū o 2, kia riro ko 5184.
2x-3-5184x^{2}=0
Tangohia te 5184x^{2} mai i ngā taha e rua.
-5184x^{2}+2x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-5184\right)\left(-3\right)}}{2\left(-5184\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5184 mō a, 2 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-5184\right)\left(-3\right)}}{2\left(-5184\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+20736\left(-3\right)}}{2\left(-5184\right)}
Whakareatia -4 ki te -5184.
x=\frac{-2±\sqrt{4-62208}}{2\left(-5184\right)}
Whakareatia 20736 ki te -3.
x=\frac{-2±\sqrt{-62204}}{2\left(-5184\right)}
Tāpiri 4 ki te -62208.
x=\frac{-2±2\sqrt{15551}i}{2\left(-5184\right)}
Tuhia te pūtakerua o te -62204.
x=\frac{-2±2\sqrt{15551}i}{-10368}
Whakareatia 2 ki te -5184.
x=\frac{-2+2\sqrt{15551}i}{-10368}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{15551}i}{-10368} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{15551}.
x=\frac{-\sqrt{15551}i+1}{5184}
Whakawehe -2+2i\sqrt{15551} ki te -10368.
x=\frac{-2\sqrt{15551}i-2}{-10368}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{15551}i}{-10368} ina he tango te ±. Tango 2i\sqrt{15551} mai i -2.
x=\frac{1+\sqrt{15551}i}{5184}
Whakawehe -2-2i\sqrt{15551} ki te -10368.
x=\frac{-\sqrt{15551}i+1}{5184} x=\frac{1+\sqrt{15551}i}{5184}
Kua oti te whārite te whakatau.
\sqrt{2\times \frac{-\sqrt{15551}i+1}{5184}-3}=6^{2}\times \frac{-\sqrt{15551}i+1}{5184}\sqrt{4}
Whakakapia te \frac{-\sqrt{15551}i+1}{5184} mō te x i te whārite \sqrt{2x-3}=6^{2}x\sqrt{4}.
-\left(\frac{1}{72}-\frac{1}{72}i\times 15551^{\frac{1}{2}}\right)=-\frac{1}{72}i\times 15551^{\frac{1}{2}}+\frac{1}{72}
Whakarūnātia. Ko te uara x=\frac{-\sqrt{15551}i+1}{5184} kāore e ngata ana ki te whārite.
\sqrt{2\times \frac{1+\sqrt{15551}i}{5184}-3}=6^{2}\times \frac{1+\sqrt{15551}i}{5184}\sqrt{4}
Whakakapia te \frac{1+\sqrt{15551}i}{5184} mō te x i te whārite \sqrt{2x-3}=6^{2}x\sqrt{4}.
\frac{1}{72}+\frac{1}{72}i\times 15551^{\frac{1}{2}}=\frac{1}{72}+\frac{1}{72}i\times 15551^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{1+\sqrt{15551}i}{5184} kua ngata te whārite.
x=\frac{1+\sqrt{15551}i}{5184}
Ko te whārite \sqrt{2x-3}=36\sqrt{4}x he rongoā ahurei.