Whakaoti mō x
x=13
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2x-1}-2\right)^{2}=\left(\sqrt{x-4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{2x-1}\right)^{2}-4\sqrt{2x-1}+4=\left(\sqrt{x-4}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{2x-1}-2\right)^{2}.
2x-1-4\sqrt{2x-1}+4=\left(\sqrt{x-4}\right)^{2}
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
2x+3-4\sqrt{2x-1}=\left(\sqrt{x-4}\right)^{2}
Tāpirihia te -1 ki te 4, ka 3.
2x+3-4\sqrt{2x-1}=x-4
Tātaihia te \sqrt{x-4} mā te pū o 2, kia riro ko x-4.
-4\sqrt{2x-1}=x-4-\left(2x+3\right)
Me tango 2x+3 mai i ngā taha e rua o te whārite.
-4\sqrt{2x-1}=x-4-2x-3
Hei kimi i te tauaro o 2x+3, kimihia te tauaro o ia taurangi.
-4\sqrt{2x-1}=-x-4-3
Pahekotia te x me -2x, ka -x.
-4\sqrt{2x-1}=-x-7
Tangohia te 3 i te -4, ka -7.
\left(-4\sqrt{2x-1}\right)^{2}=\left(-x-7\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(-4\right)^{2}\left(\sqrt{2x-1}\right)^{2}=\left(-x-7\right)^{2}
Whakarohaina te \left(-4\sqrt{2x-1}\right)^{2}.
16\left(\sqrt{2x-1}\right)^{2}=\left(-x-7\right)^{2}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
16\left(2x-1\right)=\left(-x-7\right)^{2}
Tātaihia te \sqrt{2x-1} mā te pū o 2, kia riro ko 2x-1.
32x-16=\left(-x-7\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 2x-1.
32x-16=x^{2}+14x+49
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-x-7\right)^{2}.
32x-16-x^{2}=14x+49
Tangohia te x^{2} mai i ngā taha e rua.
32x-16-x^{2}-14x=49
Tangohia te 14x mai i ngā taha e rua.
18x-16-x^{2}=49
Pahekotia te 32x me -14x, ka 18x.
18x-16-x^{2}-49=0
Tangohia te 49 mai i ngā taha e rua.
18x-65-x^{2}=0
Tangohia te 49 i te -16, ka -65.
-x^{2}+18x-65=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=18 ab=-\left(-65\right)=65
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-65. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,65 5,13
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 65.
1+65=66 5+13=18
Tātaihia te tapeke mō ia takirua.
a=13 b=5
Ko te otinga te takirua ka hoatu i te tapeke 18.
\left(-x^{2}+13x\right)+\left(5x-65\right)
Tuhia anō te -x^{2}+18x-65 hei \left(-x^{2}+13x\right)+\left(5x-65\right).
-x\left(x-13\right)+5\left(x-13\right)
Tauwehea te -x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-13\right)\left(-x+5\right)
Whakatauwehea atu te kīanga pātahi x-13 mā te whakamahi i te āhuatanga tātai tohatoha.
x=13 x=5
Hei kimi otinga whārite, me whakaoti te x-13=0 me te -x+5=0.
\sqrt{2\times 13-1}-2=\sqrt{13-4}
Whakakapia te 13 mō te x i te whārite \sqrt{2x-1}-2=\sqrt{x-4}.
3=3
Whakarūnātia. Ko te uara x=13 kua ngata te whārite.
\sqrt{2\times 5-1}-2=\sqrt{5-4}
Whakakapia te 5 mō te x i te whārite \sqrt{2x-1}-2=\sqrt{x-4}.
1=1
Whakarūnātia. Ko te uara x=5 kua ngata te whārite.
x=13 x=5
Rārangihia ngā rongoā katoa o \sqrt{2x-1}-2=\sqrt{x-4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}