Whakaoti mō x
x=4\left(\sqrt{3}+2\right)\approx 14.92820323
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x}=\frac{1}{2}x-2
Me tango 2 mai i ngā taha e rua o te whārite.
\left(\sqrt{2x}\right)^{2}=\left(\frac{1}{2}x-2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x=\left(\frac{1}{2}x-2\right)^{2}
Tātaihia te \sqrt{2x} mā te pū o 2, kia riro ko 2x.
2x=\frac{1}{4}x^{2}-2x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\frac{1}{2}x-2\right)^{2}.
2x-\frac{1}{4}x^{2}=-2x+4
Tangohia te \frac{1}{4}x^{2} mai i ngā taha e rua.
2x-\frac{1}{4}x^{2}+2x=4
Me tāpiri te 2x ki ngā taha e rua.
4x-\frac{1}{4}x^{2}=4
Pahekotia te 2x me 2x, ka 4x.
4x-\frac{1}{4}x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
-\frac{1}{4}x^{2}+4x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{4} mō a, 4 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{4}\right)\left(-4\right)}}{2\left(-\frac{1}{4}\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16-4}}{2\left(-\frac{1}{4}\right)}
Whakareatia -4 ki te -\frac{1}{4}.
x=\frac{-4±\sqrt{12}}{2\left(-\frac{1}{4}\right)}
Tāpiri 16 ki te -4.
x=\frac{-4±2\sqrt{3}}{2\left(-\frac{1}{4}\right)}
Tuhia te pūtakerua o te 12.
x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}}
Whakareatia 2 ki te -\frac{1}{4}.
x=\frac{2\sqrt{3}-4}{-\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{3}.
x=8-4\sqrt{3}
Whakawehe -4+2\sqrt{3} ki te -\frac{1}{2} mā te whakarea -4+2\sqrt{3} ki te tau huripoki o -\frac{1}{2}.
x=\frac{-2\sqrt{3}-4}{-\frac{1}{2}}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{3}}{-\frac{1}{2}} ina he tango te ±. Tango 2\sqrt{3} mai i -4.
x=4\sqrt{3}+8
Whakawehe -4-2\sqrt{3} ki te -\frac{1}{2} mā te whakarea -4-2\sqrt{3} ki te tau huripoki o -\frac{1}{2}.
x=8-4\sqrt{3} x=4\sqrt{3}+8
Kua oti te whārite te whakatau.
\sqrt{2\left(8-4\sqrt{3}\right)}+2=\frac{1}{2}\left(8-4\sqrt{3}\right)
Whakakapia te 8-4\sqrt{3} mō te x i te whārite \sqrt{2x}+2=\frac{1}{2}x.
2\times 3^{\frac{1}{2}}=4-2\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=8-4\sqrt{3} kāore e ngata ana ki te whārite.
\sqrt{2\left(4\sqrt{3}+8\right)}+2=\frac{1}{2}\left(4\sqrt{3}+8\right)
Whakakapia te 4\sqrt{3}+8 mō te x i te whārite \sqrt{2x}+2=\frac{1}{2}x.
2\times 3^{\frac{1}{2}}+4=2\times 3^{\frac{1}{2}}+4
Whakarūnātia. Ko te uara x=4\sqrt{3}+8 kua ngata te whārite.
x=4\sqrt{3}+8
Ko te whārite \sqrt{2x}=\frac{x}{2}-2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}