Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{2x^{2}-9}=x
Me tango -x mai i ngā taha e rua o te whārite.
\left(\sqrt{2x^{2}-9}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
2x^{2}-9=x^{2}
Tātaihia te \sqrt{2x^{2}-9} mā te pū o 2, kia riro ko 2x^{2}-9.
2x^{2}-9-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-9=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
\left(x-3\right)\left(x+3\right)=0
Whakaarohia te x^{2}-9. Tuhia anō te x^{2}-9 hei x^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+3=0.
\sqrt{2\times 3^{2}-9}-3=0
Whakakapia te 3 mō te x i te whārite \sqrt{2x^{2}-9}-x=0.
0=0
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
\sqrt{2\left(-3\right)^{2}-9}-\left(-3\right)=0
Whakakapia te -3 mō te x i te whārite \sqrt{2x^{2}-9}-x=0.
6=0
Whakarūnātia. Ko te uara x=-3 kāore e ngata ana ki te whārite.
x=3
Ko te whārite \sqrt{2x^{2}-9}=x he rongoā ahurei.