Whakaoti mō x
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x^{2}-9}=x
Me tango -x mai i ngā taha e rua o te whārite.
\left(\sqrt{2x^{2}-9}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
2x^{2}-9=x^{2}
Tātaihia te \sqrt{2x^{2}-9} mā te pū o 2, kia riro ko 2x^{2}-9.
2x^{2}-9-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-9=0
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
\left(x-3\right)\left(x+3\right)=0
Whakaarohia te x^{2}-9. Tuhia anō te x^{2}-9 hei x^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=3 x=-3
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+3=0.
\sqrt{2\times 3^{2}-9}-3=0
Whakakapia te 3 mō te x i te whārite \sqrt{2x^{2}-9}-x=0.
0=0
Whakarūnātia. Ko te uara x=3 kua ngata te whārite.
\sqrt{2\left(-3\right)^{2}-9}-\left(-3\right)=0
Whakakapia te -3 mō te x i te whārite \sqrt{2x^{2}-9}-x=0.
6=0
Whakarūnātia. Ko te uara x=-3 kāore e ngata ana ki te whārite.
x=3
Ko te whārite \sqrt{2x^{2}-9}=x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}