Whakaoti mō x
x=20
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x+9}=-\left(-\sqrt{x-4}-3\right)
Me tango -\sqrt{x-4}-3 mai i ngā taha e rua o te whārite.
\sqrt{2x+9}=-\left(-\sqrt{x-4}\right)-\left(-3\right)
Hei kimi i te tauaro o -\sqrt{x-4}-3, kimihia te tauaro o ia taurangi.
\sqrt{2x+9}=\sqrt{x-4}-\left(-3\right)
Ko te tauaro o -\sqrt{x-4} ko \sqrt{x-4}.
\sqrt{2x+9}=\sqrt{x-4}+3
Ko te tauaro o -3 ko 3.
\left(\sqrt{2x+9}\right)^{2}=\left(\sqrt{x-4}+3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+9=\left(\sqrt{x-4}+3\right)^{2}
Tātaihia te \sqrt{2x+9} mā te pū o 2, kia riro ko 2x+9.
2x+9=\left(\sqrt{x-4}\right)^{2}+6\sqrt{x-4}+9
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{x-4}+3\right)^{2}.
2x+9=x-4+6\sqrt{x-4}+9
Tātaihia te \sqrt{x-4} mā te pū o 2, kia riro ko x-4.
2x+9=x+5+6\sqrt{x-4}
Tāpirihia te -4 ki te 9, ka 5.
2x+9-\left(x+5\right)=6\sqrt{x-4}
Me tango x+5 mai i ngā taha e rua o te whārite.
2x+9-x-5=6\sqrt{x-4}
Hei kimi i te tauaro o x+5, kimihia te tauaro o ia taurangi.
x+9-5=6\sqrt{x-4}
Pahekotia te 2x me -x, ka x.
x+4=6\sqrt{x-4}
Tangohia te 5 i te 9, ka 4.
\left(x+4\right)^{2}=\left(6\sqrt{x-4}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+8x+16=\left(6\sqrt{x-4}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+4\right)^{2}.
x^{2}+8x+16=6^{2}\left(\sqrt{x-4}\right)^{2}
Whakarohaina te \left(6\sqrt{x-4}\right)^{2}.
x^{2}+8x+16=36\left(\sqrt{x-4}\right)^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
x^{2}+8x+16=36\left(x-4\right)
Tātaihia te \sqrt{x-4} mā te pū o 2, kia riro ko x-4.
x^{2}+8x+16=36x-144
Whakamahia te āhuatanga tohatoha hei whakarea te 36 ki te x-4.
x^{2}+8x+16-36x=-144
Tangohia te 36x mai i ngā taha e rua.
x^{2}-28x+16=-144
Pahekotia te 8x me -36x, ka -28x.
x^{2}-28x+16+144=0
Me tāpiri te 144 ki ngā taha e rua.
x^{2}-28x+160=0
Tāpirihia te 16 ki te 144, ka 160.
a+b=-28 ab=160
Hei whakaoti i te whārite, whakatauwehea te x^{2}-28x+160 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-160 -2,-80 -4,-40 -5,-32 -8,-20 -10,-16
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 160.
-1-160=-161 -2-80=-82 -4-40=-44 -5-32=-37 -8-20=-28 -10-16=-26
Tātaihia te tapeke mō ia takirua.
a=-20 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -28.
\left(x-20\right)\left(x-8\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=20 x=8
Hei kimi otinga whārite, me whakaoti te x-20=0 me te x-8=0.
\sqrt{2\times 20+9}-\sqrt{20-4}-3=0
Whakakapia te 20 mō te x i te whārite \sqrt{2x+9}-\sqrt{x-4}-3=0.
0=0
Whakarūnātia. Ko te uara x=20 kua ngata te whārite.
\sqrt{2\times 8+9}-\sqrt{8-4}-3=0
Whakakapia te 8 mō te x i te whārite \sqrt{2x+9}-\sqrt{x-4}-3=0.
0=0
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
x=20 x=8
Rārangihia ngā rongoā katoa o \sqrt{2x+9}=\sqrt{x-4}+3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}