Whakaoti mō x
x=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2x+9}\right)^{2}=\left(x+5\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+9=\left(x+5\right)^{2}
Tātaihia te \sqrt{2x+9} mā te pū o 2, kia riro ko 2x+9.
2x+9=x^{2}+10x+25
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+5\right)^{2}.
2x+9-x^{2}=10x+25
Tangohia te x^{2} mai i ngā taha e rua.
2x+9-x^{2}-10x=25
Tangohia te 10x mai i ngā taha e rua.
-8x+9-x^{2}=25
Pahekotia te 2x me -10x, ka -8x.
-8x+9-x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
-8x-16-x^{2}=0
Tangohia te 25 i te 9, ka -16.
-x^{2}-8x-16=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=-\left(-16\right)=16
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-16 -2,-8 -4,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 16.
-1-16=-17 -2-8=-10 -4-4=-8
Tātaihia te tapeke mō ia takirua.
a=-4 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(-x^{2}-4x\right)+\left(-4x-16\right)
Tuhia anō te -x^{2}-8x-16 hei \left(-x^{2}-4x\right)+\left(-4x-16\right).
x\left(-x-4\right)+4\left(-x-4\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(-x-4\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi -x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-4 x=-4
Hei kimi otinga whārite, me whakaoti te -x-4=0 me te x+4=0.
\sqrt{2\left(-4\right)+9}=-4+5
Whakakapia te -4 mō te x i te whārite \sqrt{2x+9}=x+5.
1=1
Whakarūnātia. Ko te uara x=-4 kua ngata te whārite.
\sqrt{2\left(-4\right)+9}=-4+5
Whakakapia te -4 mō te x i te whārite \sqrt{2x+9}=x+5.
1=1
Whakarūnātia. Ko te uara x=-4 kua ngata te whārite.
x=-4 x=-4
Rārangihia ngā rongoā katoa o \sqrt{2x+9}=x+5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}