Whakaoti mō x
x = \frac{\sqrt{129} + 9}{16} \approx 1.272363543
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2x+7}=x-1-\left(-3x+1\right)
Me tango -3x+1 mai i ngā taha e rua o te whārite.
\sqrt{2x+7}=x-1-\left(-3x\right)-1
Hei kimi i te tauaro o -3x+1, kimihia te tauaro o ia taurangi.
\sqrt{2x+7}=x-1+3x-1
Ko te tauaro o -3x ko 3x.
\sqrt{2x+7}=4x-1-1
Pahekotia te x me 3x, ka 4x.
\sqrt{2x+7}=4x-2
Tangohia te 1 i te -1, ka -2.
\left(\sqrt{2x+7}\right)^{2}=\left(4x-2\right)^{2}
Pūruatia ngā taha e rua o te whārite.
2x+7=\left(4x-2\right)^{2}
Tātaihia te \sqrt{2x+7} mā te pū o 2, kia riro ko 2x+7.
2x+7=16x^{2}-16x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4x-2\right)^{2}.
2x+7-16x^{2}=-16x+4
Tangohia te 16x^{2} mai i ngā taha e rua.
2x+7-16x^{2}+16x=4
Me tāpiri te 16x ki ngā taha e rua.
18x+7-16x^{2}=4
Pahekotia te 2x me 16x, ka 18x.
18x+7-16x^{2}-4=0
Tangohia te 4 mai i ngā taha e rua.
18x+3-16x^{2}=0
Tangohia te 4 i te 7, ka 3.
-16x^{2}+18x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\left(-16\right)\times 3}}{2\left(-16\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16 mō a, 18 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-16\right)\times 3}}{2\left(-16\right)}
Pūrua 18.
x=\frac{-18±\sqrt{324+64\times 3}}{2\left(-16\right)}
Whakareatia -4 ki te -16.
x=\frac{-18±\sqrt{324+192}}{2\left(-16\right)}
Whakareatia 64 ki te 3.
x=\frac{-18±\sqrt{516}}{2\left(-16\right)}
Tāpiri 324 ki te 192.
x=\frac{-18±2\sqrt{129}}{2\left(-16\right)}
Tuhia te pūtakerua o te 516.
x=\frac{-18±2\sqrt{129}}{-32}
Whakareatia 2 ki te -16.
x=\frac{2\sqrt{129}-18}{-32}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{129}}{-32} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{129}.
x=\frac{9-\sqrt{129}}{16}
Whakawehe -18+2\sqrt{129} ki te -32.
x=\frac{-2\sqrt{129}-18}{-32}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{129}}{-32} ina he tango te ±. Tango 2\sqrt{129} mai i -18.
x=\frac{\sqrt{129}+9}{16}
Whakawehe -18-2\sqrt{129} ki te -32.
x=\frac{9-\sqrt{129}}{16} x=\frac{\sqrt{129}+9}{16}
Kua oti te whārite te whakatau.
\sqrt{2\times \frac{9-\sqrt{129}}{16}+7}-3\times \frac{9-\sqrt{129}}{16}+1=\frac{9-\sqrt{129}}{16}-1
Whakakapia te \frac{9-\sqrt{129}}{16} mō te x i te whārite \sqrt{2x+7}-3x+1=x-1.
-\frac{15}{16}+\frac{7}{16}\times 129^{\frac{1}{2}}=-\frac{7}{16}-\frac{1}{16}\times 129^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{9-\sqrt{129}}{16} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{2\times \frac{\sqrt{129}+9}{16}+7}-3\times \frac{\sqrt{129}+9}{16}+1=\frac{\sqrt{129}+9}{16}-1
Whakakapia te \frac{\sqrt{129}+9}{16} mō te x i te whārite \sqrt{2x+7}-3x+1=x-1.
-\frac{7}{16}+\frac{1}{16}\times 129^{\frac{1}{2}}=\frac{1}{16}\times 129^{\frac{1}{2}}-\frac{7}{16}
Whakarūnātia. Ko te uara x=\frac{\sqrt{129}+9}{16} kua ngata te whārite.
x=\frac{\sqrt{129}+9}{16}
Ko te whārite \sqrt{2x+7}=4x-2 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}