Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2x+48}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
2x+48=x^{2}
Tātaihia te \sqrt{2x+48} mā te pū o 2, kia riro ko 2x+48.
2x+48-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+2x+48=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-48=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+48. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,48 -2,24 -3,16 -4,12 -6,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Tātaihia te tapeke mō ia takirua.
a=8 b=-6
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(-x^{2}+8x\right)+\left(-6x+48\right)
Tuhia anō te -x^{2}+2x+48 hei \left(-x^{2}+8x\right)+\left(-6x+48\right).
-x\left(x-8\right)-6\left(x-8\right)
Tauwehea te -x i te tuatahi me te -6 i te rōpū tuarua.
\left(x-8\right)\left(-x-6\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-6
Hei kimi otinga whārite, me whakaoti te x-8=0 me te -x-6=0.
\sqrt{2\times 8+48}=8
Whakakapia te 8 mō te x i te whārite \sqrt{2x+48}=x.
8=8
Whakarūnātia. Ko te uara x=8 kua ngata te whārite.
\sqrt{2\left(-6\right)+48}=-6
Whakakapia te -6 mō te x i te whārite \sqrt{2x+48}=x.
6=-6
Whakarūnātia. Ko te uara x=-6 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=8
Ko te whārite \sqrt{2x+48}=x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}